Shankar Kumar Selvaraja Assistant Professor T +91 80 22933342 E shankarks@iisc.ac.in http://www. http://www.cense.iisc.ac.in/shankar-kur selvaraja

8st February 2021

To Whomever It May Concern

This is an RFQ (Request for Quote) for Supply of Silicon wafers to be used for microelectronics applications (Quotes from Domestic manufacturers / vendors only).

Procedure:

- 1. Vendors will be required to submit a quote, containing details of the Indian OEM with FOR IISc Bengaluru price.
- 2. The technical description should take into account the following requirements and information that has been provided:

Wafer Spec	Quantity
	150 Nos.
Wafer #1:	
MATERIAL: SILICON	
Diameter: 76.2mm+/-0.5mm	
Growth Method: Cz	
Orientation: <1-0-0>+/-1°	
Type/Dopant: P/Boron	
Resistivity: 1-10 ohm-cm	
Thickness: 381+/-25 μm	
Front Surface: Polished	
Back Surface: Etched	
Flat(s):2 per SEMI standard	
Wafer #2	150 Nos.
SILICON WAFERS	
Diameter:76.2+/-0.5 mm	
Growth Method: Cz	
Type/Dopant: N/Phos	
Orientation: <1-0-0>+/-1°	
Resistivity: 1-10 ohm-cm	
Thickness: 381+/-25 µm	
Front Surface: Polished	
Back Surface: Etched	
Flat(s):2 per SEMI standard	
Wafer #3	150 Nos.
SILICON WAFERS	

T +91 80 22933342 E shankarks@iisc.ac.in http://www. http://www.cense.iisc.ac.in/shankar-kur selvaraja

Diameter:76.2+/-0.5 mm Growth Method: Cz Type/Dopant: N/Phos Orientation: <1-0-0>+/-1° Resistivity: 1-100 ohm-cm Thickness: 381+/-25 μm Front Surface: Polished Back Surface: Etched Flat(s):2 per SEMI standard	
Wafer #4 MATERIAL: SILICON Diameter: 100mm+/-0.5mm Growth Method: Cz Orientation: <1-0-0>+/-1° Type/Dopant: P/Boron Resistivity: 1-100 ohm-cm Thickness: 525+/-25 µm Front Surface: Polished Back Surface: Etched	150 Nos.
Wafer #5 MATERIAL: SILICON Diameter: 100mm+/-0.5mm Growth Method: Cz Orientation: <1-0-0>+/-1° Type/Dopant: P/Boron Resistivity: 1-10 ohm-cm Thickness: 525+/-25 µm Front Surface: Polished Back Surface: Etched Flat(s):2 per SEMI standard	150 Nos.
Wafer #6 MATERIAL: SILICON Diameter: 100mm+/-0.5mm Growth Method: Cz Orientation: <1-0-0>+/-1° Type/Dopant: N/Phos Resistivity: 1-10 ohm-cm Thickness: 525+/-25 µm Front Surface: Polished Back Surface: Etched Flat(s):2 per SEMI standard	150 Nos.

T +91 80 22933342 E shankarks@iisc.ac.in http://www. http://www.cense.iisc.ac.in/shankar-kur selvaraja

Wafer #7	150 Nos.
MATERIAL: SILICON	
Diameter: 100mm+/-0.5mm	
Growth Method: Cz	
Orientation: <1-0-0>+/-1°	
Type/Dopant: N/Phos	
Resistivity: 1-100 ohm-cm	
Thickness: 525+/-25 μm	
Front Surface: Polished	
Back Surface: Etched	
Flat(s):2 per SEMI standard	
Trat(s).2 per SEIVIT standard	
Wafer #8	50 Nos.
Diameter: 50.8mm	
Orientation: <111>	
Type/Dopant: N/Phos	
Resistivity: 1-10 Ohm-cm	
Thickness: $300 \pm 25 \mu m$	
Front Surface: Polished	
Back Surface: Etched	
Flat(s): 2 Per SEMI Standard	
Trat(s). 2 Ter SElvir Standard	
Wafer #9	50 Nos
Diameter: 50.8mm	
Orientation: <110>	
Type/Dopant: N/Phos	
Resistivity: 1-10 Ohm-cm	
Thickness: $300 \pm 25 \mu m$	
Front Surface: Polished	
Back Surface: Etched	
Flat(s): 2 Per SEMI Standard	
1 m(b). 2 1 of blavit buildard	
Wafer #10	150 Nos
Diameter: $150 \pm 0.3 \text{ mm}$	
Orientation: <100>	
Type/Dopant: N/Phos	
Resistivity: 1-100 Ohm-cm	
Thickness: $625 \pm 25 \mu m$	
Front Surface: Polished	
Back Surface: Etched	
Flat(s): 1 Primary Flat, SEMI-Std	
1 1 1 1 1 1 1 1 1 1	

- 3. The commercial comparison will be done as per Government of India rules, specifically GFR 2017. Note that GFR has recently been amended.
- As per recent edits to the GFR, there are three classes of vendors distinguished by their "local content". In the cover letter, vendors must mention which applies to them: Class 1 supplier: Goods and services have a local content of equal to or more than 50%

Class 2 supplier: Goods and services have a local content more than 20% but less than 50%

Non-local supplier: Goods and services have a local content of equal to or less than 20%

- 5. Quotes will be entertained from Class 1 or Class 2 suppliers only.
- 6. The deadline for submission of quotes is the 19th February 2021, 5:30 pm Indian Standard Time. Proposals should arrive at the NNFC office, GF-20, Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India, by the above deadline
- 7. Please note: GST applicable to IISc will be 5 %. GST concessional certificate will be provided.

Thanking you,

Shankar Kumar Selvaraja, Ph.D. Assistant Professor Centre for Nano Science and Engineering Indian Institute of Science, Bangalore, India 560012. Office :+91-80-2293-3342 E-mail: shankarks@iisc.ac.in