Society for Innovation and Development (SID)

Indian Institute of Science (IISc), Bangalore, INDIA

Open Tender Notice

Tender Notification Ref No.: SID/ICER/ENQ/TNDR/PD-PK/20-21/01 Date: 4th November 2020

The Society for Innovation and Development (SID), Indian Institute of Science Bangalore, invites tenders for "Detailed Project Report (DPR) for Concentrated Solar Power (CSP) Plant with Supercritical Carbon Dioxide (s-CO2) Power Cycle".

The scope of bid includes Preparation of Detailed Project Report (DPR) for Supercritical Carbon Dioxide (s-CO2) based power generation with external heat sources including concentrated solar thermal.

Details of project overview will be provided by IISc to participating bidders on request.

All the bidders are requested to follow below mentioned <u>Detailed Scope of Work</u>, <u>requirements</u>, <u>Terms and Conditions</u> for submission of bids.

1 Scope of work:

1.1 Common scope of work for DPR

Sl. no	Description					
1.1.1	Project cost estimation and project implementation schedule.					
1.1.2	Estimate project cost with reasonable accuracy commensurate with the project					
	definition established at the time of final report submission.					
1.1.3	Present time schedule and execution methodology for implementation of the					
	pilot plant.					
1.1.4	Roadmap for commercialization including cost estimation.					
1.1.5	Identify critical equipment/components that are unique and in developmental					
	phase along with identifying Indian partner(s) who could lead these					
	developmental activities. If no such Indian partner exists, the DPR should list a					
	roadmap for indigenisation, identifying potential Indian partner who has					
	requisite expertise in similar developmental activities.					

<u>Note:</u> As the subject matter of the proposed the DPR is still under developmental stage, apart from studying the technology development worldwide from the material available on public domain, it would be essential to collect information on the latest developments on the related aspects including indigenization program of critical technology towards import substitution from the Indian equipment manufacturers and other Indian organizations working in these areas.

The scope of work in the DPR has been divided into 3 parts, the details of each are as mentioned below:

1.2 DPR Part 1: s-CO2 based power generation using concentrated solar heat

Sl. no	Work description						
1.2.1	Study the present status of Concentrating Solar Power (CSP) technology in						
	combination with s-CO2 based power cycle worldwide						
1.2.1.a	Evaluate central receiver tower technology with s-CO2 based power cycle.						
1.2.1.b	Establish the optimal capacity of the power plant for the Indian market considering present status of commercially established technologies, investment and life cycle cost.						
1.2.1.c	Study the progress of CSP technology in combination with s-CO2 based power cycle in the years ahead based on current research & development as gathered from literature survey and information available in the public domain; and prepare a road map for its adoption on a commercial scale for captive and utility power in India.						
1.2.1.d	Identify critical equipment/component, viz., turbine, compressor, power tower receiver, energy storage device, suitability of heat transfer medium/fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale CSP in India.						
1.2.2	Identify critical equipment/components and their current status of development						
1.2.2.a	Present a road map for their adoption into the pilot plant as the technology of individual equipment/component matures.						

1.3 DPR Part 2: s-CO2 based power generation using waste heat

Sl. No.	Work Description
1.3.1	Study the present status of s-CO2 based power cycle using waste heat
1.3.1.a	Develop preliminary design and schemes for the s-CO2 power generation as
	bottoming cycle for a gas turbine power plant, similar capacity as in DPR Part 1.
1.3.1.b	Listing of major gas turbine models that will support bottoming power cycle of
	similar capacity as in DPR Part 1.
1.3.1.c	Develop preliminary design and schemes for the s-CO2 power generation using
	industrial waste heat from process plants, such as cement, steel, and fertilizer
	plants. The capacity will be similar to that of DPR Part 1.

<u>Note</u>: The capacity of the bottoming cycle for the purpose of the study would be in the MW level. With regard to item 1.3.1.a, this part of the DPR will cover the bottoming cycle part only i.e., starting from gas turbine exhaust waste heat recovery boiler to power generation in bottoming cycle up to power evacuation. The study will not cover the topping cycle part i.e., gas turbine and related power generation/evacuation. With regard to item 1.3.1.c, this part of the DPR will cover only the waste heat recovery heat exchanger and associated to power generation in bottoming cycle up to power evacuation.

1.4 DPR Part 3: s-CO2 based power generation using external heat source

Sl. no	Work Description
1.4.1	Study the progress of s-CO2 based power cycle in the years ahead based on current research & development, information as gathered from OEMs and R&D organizations. The critical equipment/component, viz., turbine, compressor, suitability of heat transfer medium/ fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale for captive and utility power in India.
1.4.2	Develop preliminary design and schemes for the s-CO2 power cycle with external heat source such as natural gas.

<u>Note:</u> The criteria for determining capacity of the s-CO2 power cycle will be its scalability for further development towards commercial operation. The capacity will be similar to that of DPR Part 1.

2 Division of Responsibility (DOR)

Sl. no	Activities	Division of Responsibility		
	Activities	IISc	Consultant	
2.1	Arrangement of data for DPRs	Consult	Responsible	
2.2	Solar energy yield & power cycle heat balance calculations	Consult	Responsible	
2.3	Technology roadmap/ design assessment of power tower receiver, energy storage, HTF, s-CO2 heat exchanger, s-CO2 turbine, s-CO2 compressor	Review / Consult	Responsible	
2.4	s-CO ₂ cycle – design consideration	Responsible	Review	
2.5	Plant configuration	Review	Responsible	
2.6	Environmental and safety consideration	Consult	Responsible	
2.7	Material selection consideration	Consult	Responsible	
2.8	Plant arrangement & layouts	Consult	Responsible	
2.9	Technical specifications & diagrams	Consult	Responsible	
2.10	Project timelines and cost estimate	-	Responsible	
2.11	Techno-economic analysis	-	Responsible	
2.12	Report preparation	Review	Responsible	

3 Report preparation

Sl. no	Description					
3.1	The reports will be prepared covering all the aspects mentioned in Section 1.					
3.2	Preparation of 3 parts of the DPR are in the scope of the Consultant, it may be					
	required to combine these parts into one DPR.					
3.3	As required and desired by IISc, Consultant would be required to participate in					
	meetings with IISc in the course of the DPR preparation and also revise the draft					
	DPR till its acceptance by IISc.					
3.4	Consultant may be required to undertake travel for preparation of DPR. For such					
	travels, the cost should be borne by the Consultant.					

4 Methodology of DPR preparation

Sl. no	Description							
4.1	The Consultant should describe in detail the approach and methodology to be							
	followed in preparing the DPR and shall submit a typical content sheet of the proposed DPR.							
4.2	The methodology should cover various tasks to be performed in preparing the							
	DPR to meet its stated goal including but not limited to							
	Site selection							
	Project justification							
	Technology selection							
	Material selection criteria							
	Systems & equipment description							
	Layout preparation							
	 Indigenization of critical technology for equipment/components 							
	Cost/tariff estimation for pilot plant with break up under major cost heads							
	and financial analysis							
	Roadmap for commercialization including cost and tariff estimation for							
	commercial level plant.							

5 Deliverables

Sl. no	Description					
5.1	Detailed Project Report for a scalable MW level Supercritical Carbon Dioxide (s-					
	CO2) Power Cycle with Concentrated Solar Power (CSP) as heat source.					
5.2	Detailed Project Report for a scalable MW level Supercritical Carbon Dioxide (s-					
	CO2) Power Cycle based plant used as bottoming cycle for combined cycle					
	application, and using industrial waste heat.					
5.3	Detailed Project Report for a scalable MW level Supercritical Carbon Dioxide (s-					
	CO2) Power Cycle based plant with gas/oil fired boiler as heat source.					

6 Timelines

Sl. no	Description
6.1	Complete DPR within three months from the date of release of purchase order.
6.2	The submitted report will be subject to revision by the Consultant, based on review
	comments given by IISc.

7 Mandatory requirements:

- a) The bidders must enclose a client list, contact details, relevant brochures and compliance certificate (Annexure I) with the tender.
- b) The bidders should be well established firm preferably leaders in the application stated above and must have a proven track record.
- c) The Consultant should be a registered/incorporated firm in India, with at least 15 years of existence in the field of power sector.
- d) Annual turnover of minimum Rs.500 crore in each of the last three financial years i.e. FY 2016-17, 2017-18, and 2018-19 or FY 2017-18, 2018-19 and 2019-20.
- e) Should not be blacklisted by any Central / State Government / Local Government / Public Sector Undertaking in India.
- f) The agency/firm should have prepared at least one Feasibility report or Detailed Project report for a megawatt level (1MWe or above) concentrated solar thermal based power plant.
- g) The agency/firm should have engineered at least one Megawatt level concentrated solar thermal based power plant (1MWe or above) which is successfully commissioned prior to submission of this proposal.
- h) The agency/firm should have prepared at least one Feasibility report or Detailed Project report for a megawatt level (1MWe or above) s-CO2 based power cycle.

OR

The agency/firm should have carried out at least one detail engineering or concept design for a megawatt level (1MWe or above) s-CO2 based power cycle.

8 Indemnity and Other Terms

The agency/firm selected shall be responsible for its own acts and/or omissions and those of its Officers, employees, and agents during DPR execution. The selected agency/firm shall fully indemnify and hold IISc-SID harmless against all claims arising out of agency/firm work done under this. All Intellectual Property or products that result in whole or in part by the selected partner for the DPR Work will belong to IISc.

9 Technical evaluation

Sl. No.	Qualification Criteria
9.1	Consultant's experience in preparing feasibility report or detailed project report for Megawatt level Concentrated Solar Plant (CSP) based power plant
9.2	Consultant's experience in engineering megawatt level Concentrated Solar Plant (CSP) based power plant
9.3	Consultant's experience in preparing feasibility report / detailed project report for Megawatt level s-CO ₂ based power plant.
9.4	Consultant's experience in carrying out detail engineering/ concept design of Megawatt level s-CO ₂ based power plant.
9.5	Approach, Methodology and Work Plan for Performing the Assignment
9.6	Overall design and engineering experience of Consultant in solar and thermal power plants
9.7	Resume(s) of the team of Executives who shall work on the assignment

Note: The Bidders shall provide all documentary evidences in respect of the qualifications; and have performed such Consultancy work for the external client(s). Any additional documents that IISc considers required for the evaluation, the same will be intimated by IISc to Bidders for submission.

10 Selection criteria

Evaluation will be based on the technical qualification. Commercial bids of only those technically qualified bidders will be considered.

TERMS AND CONDITIONS FOR SUBMISSION OF BIDS

Both the Technical and Commercial bids should be put in separate sealed envelopes and both the envelopes should be put in another cover subscribing "Preparation of Detailed Project Reports (DPRs) for a scalable Megawatt level Supercritical Carbon Dioxide (s-CO2) Power Cycle with Concentrated Solar Power (CSP) as heat source" and should reach "The Chief Executive, Society for Innovation and Development (SID), IISc, Bangalore-560012 on or before Monday, 24th November 2020.

- 1. No sub-contracting is permitted for the tender as a whole. The Consultant shall not bid on behalf of another agency/consultant. The Consultant shall provide an undertaking to this effect, as part of the technical bid.
- 2. The Technical bid must include all the details of earlier prepared technical DPR, compliance certificate along with commercial terms and conditions, **however**, **without the price component**.
- 3. The commercial bid must include the price of the item(s) in INR currency indicating the breakup of
 - a) Detailed price breakup without the tax components. The payment terms should be clearly indicated in the commercial bid. Advance payments will be made to the Consultant against issue of Bank Guarantee for 100 % of the payment requested.
 - b) Only GST of 18% (or tax prevailing at the time of invoicing) will be paid by IISc, Bangalore. The payment will be made in INR only to the Consultant to whom contract is awarded and purchase order is released. No separate payments will be made to any of the subcontractors the agency may hire for part of the work.
 - c) 30% of the DPR charges to the bidding agency will be paid only after satisfactory review by IISc.
- 4. Conditional tenders shall not be accepted.
- 5. Bids shall remain valid for minimum of 30 days after the date of bid opening prescribed by the Purchaser.
- 6. IISc Bangalore reserves the right to accept or reject any bid, and to annul the bidding process and reject all bids at any time prior to award of Contract, without thereby incurring any liability to the affected Bidder or Bidders.

Annexure-I

Note: Compliance Certificate must be enclosed with the technical bid according to the format given below. *This is a mandatory requirement, without which the technical bid will be disqualified.*

1 Scope of work:

1.1 Common scope of work for all DPRs

Sl. no	Description	Comply	Non- Comply	Deviation	Remarks
1 1 1	D : 4 4: 4:		Compry		
1.1.1	Project cost estimation				
	and project				
1.1.2	implementation schedule.				
1.1.2	Estimate project cost with				
	reasonable accuracy				
	commensurate with the				
	project definition				
	established at the time of				
	final report submission.				
1.1.3	Present time schedule and				
	execution methodology				
	for implementation of the				
	pilot plant.				
1.1.4	Roadmap for				
	commercialization				
	including cost estimation.				
1.1.5	Identify critical				
	equipment/components				
	that are unique and in				
	developmental phase				
	along with identifying				
	Indian partner(s) who				
	could lead these				
	developmental activities.				
	If no such Indian partner				
	exists, the DPR should list				
	a roadmap for				
	indigenisation, identifying				
	potential Indian partner				
	who has requisite				
	expertise in similar				
	developmental activities.				

1.2 DPR Part 1:

Sl. no	Description	Comply	Non- Comply	Deviation	Remarks
			1 0		
1.2.1	Study the present status of				
	Concentrating Solar				
	Power (CSP) technology				
	in combination with s-				
	CO2 based power cycle				
	worldwide				
1.2.1.a	Evaluate central receiver				
	tower technology with s-				
	CO2 based power cycle.				
1.2.1.b	Establish the optimal				
	capacity of the power				
	plant for the Indian				
	market considering				
	present status of				
	commercially established				
	technologies, investment				
	and life cycle cost.				
1.2.1.c	Study the progress of CSP				
	technology in combination				
	with s-CO2 based power				
	cycle in the years ahead				
	based on current research				
	& development as				
	gathered from literature				
	survey and information				
	available in the public				
	domain; and prepare a				
	road map for its adoption				
	on a commercial scale for				
	captive and utility power				
	in India.				
1.2.1.d	Identify critical				
	equipment/component,				
	viz., turbine, compressor,				
	power tower receiver,				
	energy storage device,				

	suitability of heat transfer medium/fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale CSP in India.		
1.2.2	Identify critical equipment/components and their current status of development		
1.2.2.a	Present a road map for their adoption into the pilot plant as the technology of individual equipment/component matures.		

1.3 DPR Part 2:

Sl. no	Description	Comply	Non- Comply	Deviation	Remarks
1.3.1	Study the present status of s-CO2 based power cycle using waste heat				
1.3.1.a	Develop preliminary design and schemes for the s-CO2 power generation as bottoming cycle for a gas turbine power plant, similar capacity as in DPR Part 1.				
1.3.1.b	Listing of major gas turbine models that will support bottoming power cycle of similar				

capacity as in DPR Part		
1.		

1.4 DPR Part 3:

Description	Comply	Non- Comply	Deviation	Remarks
Study the progress of s-				
_				
1				
1				
critical				
equipment/component,				
viz., turbine,				
compressor, suitability				
of heat transfer				
medium/ fluid, and heat				
exchanger; and prepare				
a technology road map				
for its adoption on a				
commercial scale for				
captive and utility				
power in India.				
Develop preliminary				
design and schemes for				
the s-CO2 power cycle				
with external heat				
source such as natural				
gas.				
	CO2 based power cycle in the years ahead based on current research & development, information as gathered from OEMs and R&D organizations. The critical equipment/component, viz., turbine, compressor, suitability of heat transfer medium/ fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale for captive and utility power in India. Develop preliminary design and schemes for the s-CO2 power cycle with external heat source such as natural	CO2 based power cycle in the years ahead based on current research & development, information as gathered from OEMs and R&D organizations. The critical equipment/component, viz., turbine, compressor, suitability of heat transfer medium/ fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale for captive and utility power in India. Develop preliminary design and schemes for the s-CO2 power cycle with external heat source such as natural	CO2 based power cycle in the years ahead based on current research & development, information as gathered from OEMs and R&D organizations. The critical equipment/component, viz., turbine, compressor, suitability of heat transfer medium/ fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale for captive and utility power in India. Develop preliminary design and schemes for the s-CO2 power cycle with external heat source such as natural	CO2 based power cycle in the years ahead based on current research & development, information as gathered from OEMs and R&D organizations. The critical equipment/component, viz., turbine, compressor, suitability of heat transfer medium/ fluid, and heat exchanger; and prepare a technology road map for its adoption on a commercial scale for captive and utility power in India. Develop preliminary design and schemes for the s-CO2 power cycle with external heat source such as natural

2 Division of Responsibility (DOR)

Sl.			ion of	Comply	Non-	Deviation	Remarks
no	Activities	Respor	ısibility		Comply		
		IISc	Consultant				
2.1	Arrangement of data for DPR	Consult	Responsible				
2.2	Solar energy yield & power cycle heat balance calculations	Consult	Responsible				
2.3	Technology roadmap/ design assessment of power tower receiver, energy storage, HTF, s-CO2 heat exchanger, s-CO2 turbine, s-CO2 compressor	Review / Consult	Responsible				
2.4	s-CO ₂ cycle – design consideration	Responsible	Review				
2.5	Plant configuration	Review	Responsible				
2.6	Environmental and safety consideration	Consult	Responsible				
2.7	Material selection consideration	Consult	Responsible				
2.8	Plant arrangement & layouts	Consult	Responsible				
2.9	Technical specifications & diagrams	Consult	Responsible				

2.10	Project cost estimate	-	Responsible		
2.11	Financial analysis	-	Responsible		
2.12	Report preparation	Review	Responsible		

3 Report preparation

Sl.	Description	Comply	Non-	Deviation	Remarks
no			Comply		
	The reports will be				
3.1	prepared covering all				
	the aspects mentioned				
	in sections 1 and 2 of				
	this tender document.				
3.2	Preparation of 3 parts				
	of the DPR are in the				
	scope of Consultant, it				
	may be required to				
	combine these three				
	parts into one DPR.				
3.3	As required and desired				
	by IISc, Consultant				
	would be required to				
	participate in meetings				
	with IISc and				
	stakeholders within				
	India in the course of				
	DPR preparation and				
	also revision of the				
	submitted DPR till its				
	acceptance by IISc.				

4 Methodology of DPR preparation

Sl.	Description	Comply	Non-	Deviation	Remarks
no			Comply		
4.1	Consultant should describe in detail				
	the approach and methodology to be				

	followed in preparing the DPR and		
	shall submit a typical content sheet of		
	the proposed DPR.		
4.2	The methodology should cover		
	various tasks to be performed in		
	preparing the DPR to meet its stated		
	goal including but not limited to		
	• Site selection		
	 Project justification 		
	 Technology selection 		
	Material selection criteria		
	• Systems & equipment		
	description		
	 Layout preparation 		
	• Indigenization of critical		
	technology for		
	equipment/components		
	• Cost/tariff estimation for		
	pilot plant with break up		
	under major cost heads and		
	financial analysis		
	• Roadmap for		
	commercialization including		
	cost and tariff estimation for		
	commercial level plant.		

5 Deliverables

Sl.	Description	Comply	Non-	Deviation	Remarks
no			Comply		
5.1	Detailed Project Report				
	for a scalable MW level				
	Supercritical Carbon				
	Dioxide (s-CO2) Power				
	Cycle with				
	Concentrated Solar				
	Power (CSP) as heat				
	source.				
5.2	Detailed Project Report				
	for a scalable MW level				
	Supercritical Carbon				
	Dioxide (s-CO2) Power				
	Cycle based plant used				

	as bottoming cycle for combined cycle application, and using		
	industrial waste heat.		
5.3	Detailed Project Report		
	for a scalable MW level		
	Supercritical Carbon		
	Dioxide (s-CO2) Power		
	Cycle based plant with		
	gas/oil fired boiler as		
	heat source.		

6 Timelines

Sl.	Description	Comply	Non-	Deviation	Remarks
no			Comply		
6.1	Complete DPR within				
	three months from the				
	date of release of				
	purchase order.				
6.2	The submitted report will				
	be subject to revision by				
	the Consultant, based on				
	review comments given by				
	IISc.				
6.3	Consultant shall submit a				
	bar chart covering major				
	milestone activities from				
	commencement to the				
	submission of final DPR.				