
1

Lipi Gnani - A Versatile OCR for Documents in any
Language Printed in Kannada Script

H. R. SHIVA KUMAR, Indian Institute of Science
A. G. RAMAKRISHNAN, Indian Institute of Science

A Kannada OCR, named Lipi Gnani, has been designed and developed from scratch, with the moti-
vation of it being able to convert printed text or poetry in Kannada script, without any restriction
on vocabulary. The training and test sets have been collected from over 35 books published between
the period 1970 to 2002, and this includes books written in Halegannada and pages containing San-
skrit slokas written in Kannada script. The coverage of the OCR is nearly complete in the sense
that it recognizes all the punctuation marks, special symbols, Indo-Arabic and Kannada numerals.
Several minor and major original contributions have been done in developing this OCR at the
different processing stages such as binarization, character segmentation, recognition and Unicode
mapping. This has created a Kannada OCR that performs as good as, and in some cases, better
than the Google’s Tesseract OCR, as shown by the results. To the knowledge of the authors, this is
the maiden report of a complete Kannada OCR, handling all the issues involved. Currently, there
is no dictionary based postprocessing, and the obtained results are due solely to the recognition
process. Four benchmark test databases containing scanned pages from books in Kannada, Sanskrit,
Konkani and Tulu languages, but all of them printed in Kannada script, have been created. The
word level recognition accuracy of Lipi Gnani is 5.3% higher on the Kannada dataset than that of
Google’s Tesseract OCR, 8.5% higher on the Sanskrit dataset, and 23.4% higher on the datasets
of Konkani and Tulu.

CCS Concepts: • Applied computing → Optical character recognition; Document analysis;

Additional Key Words and Phrases: Kannada, Sanskrit, Tulu, Konkani, Segmentation, OCR, Hale-
gannada, SVM

ACM Reference format:
H. R. Shiva Kumar and A. G. Ramakrishnan. 2020. Lipi Gnani - A Versatile OCR for Documents
in any Language Printed in Kannada Script. ACM Trans. Asian Low-Resour. Lang. Inf. Process.
1, 1, Article 1 (February 2020), 24 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The OCR for printed text can be used to digitize old, classical books, stories, educational
and research treatise and convert them to searchable text. This will make these classical
and educative literature immediately available around the world. Good recognition technol-
ogy for printed text can also make school, college and other books readily available for the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing
Machinery.
2375-4699/2020/02-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 H. R. Shiva Kumar and A. G. Ramakrishnan

blind. Digitization of historical collections of newspapers and magazines will make a wealth
of information readily available to the new generation. In financial technology (FinTech)
industry, automated extraction of key fields of importance from documents such as agree-
ments, mortgage and sale documents can drastically reduce the processing cost and time,
thereby creating an enhanced customer experience.

While so much work has been reported on Indic OCRs in the past two decades, the
recognition accuracies have not reached the maturity levels needed for exploitation in real-
life applications. Motivated by the passion to enable the visually challenged people to access
any printed material in Indian languages, we have created OCR and text-to-speech systems
for two of the South Indian languages, Kannada and Tamil, which are already being used
by hundreds of blind individuals and numerous institutions in Karnataka and Tamil Nadu.

This paper describes the design of our Kannada OCR called Lipi Gnani. Section 1.1 gives
a brief survey of the work reported on Indic OCRs, with particular reference to Kannada.
Section 2 gives an overview of Kannada script from an OCR perspective. Section 3 gives
the details of development of the various modules of the OCR. Sections 4 and 5 give the
results of performance evaluation on the open benchmarking datasets and compare them
with those of Google’s Tesseract OCR.

1.1 Literature Survey
The first contribution in the development of OCR technology for Indic languages is by
Rajasekaran and Deekshatulu [Rajasekaran and Deekshatulu 1977] for Telugu in 1977! Then,
in 1979, Sinha and Mahabala [Sinha and Mahabala 1979] reported an OCR for Devanagari.
In 1991, Chaudhury et al. reported work on Telugu [Chaudhuri et al. 1991] and then in
1994, on Bangla [Pal and Chaudhuri 1994]. This was shortly followed by Nagabhushan
for Kannada [Nagabhushan and Pai 1999], Lehal for Gurmukhi [Lehal and Singh 2000],
and Veena and Sinha for Devanagari [Bansal and Sinha 2000, 2002]. In 2000, Pati and
Ramakrishnan reported the first OCR work on Odiya [Pati and Ramakrishnan 2000; Pati
et al. 2000]. In 2001, Negi and Chakravarthy worked on Telugu [Negi et al. 2001]. Then,
Sadhana had a special issue in 2002, where there were articles on the overview of document
analysis [Kasturi et al. 2002], Kannada OCR [Ashwin and Sastry 2002] leveraging support
vector machine (SVM), post-processing of Gurmukhi OCR [Lehal and Singh 2002] and
also identification of Tamil and Roman scripts at the level of words [Dhanya et al. 2002].
A Tamil OCR was also reported by two different groups [Aparna and Ramakrishnan 2002;
Kokku and Chakravarthy 2009]. BBN reported a Hindi OCR in 2005 [Natarajan et al. 2005],
employing hidden Markov model (HMM). A lot of work has been carried out by Manmatha
related to historical documents [Rath and Manmatha 2007]. There was an update on most
of the above works in the book edited by Govindaraju and Setlur [Govindaraju and Setlur
2009], and a Malayalam OCR was also reported [Neeba et al. 2009]. [Krishnan et al. 2014;
Mathew et al. 2016] made use of deep neural networks for the first time for Indic OCRs.

The above approaches to Indic OCRs could generally be grouped into three generations.
The first generation approaches made use of structural features, geometric moments, etc.
with basic classifiers such as nearest neighbour (NN), k-NN and decision trees. The second
generation techniques employed transform features (discrete cosine transform, Karhunen-
Loeve transform, discrete wavelet transform (DWT), etc.) with improved classifiers such as
SVM and HMM. The third generation methods perform automatic feature extraction using
convolutional neural networks (CNN) and classify using recurrent neural networks (RNN).
Our OCR improves on the second generation approaches to Indic OCRs.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:3

There are a number of reports in the literature on Kannada OCR [Ashwin and Sastry 2002;
Nagabhushan and Pai 1999; Vijay Kumar and Ramakrishnan 2002, 2004]. However, most of
these reports deal only with Kannada characters and none of them deal with the recognition
of numerals, punctuation and other symbols normally present in any printed document. This
is true also for the other papers surveyed above. Thus, to the knowledge of the authors, all of
the above research work in Indic language OCRs involve theoretical contributions only and
none of them have actually been used to digitize real-life printed matter. Recently, Mathew
et al. [Mathew et al. 2016] reported the use of RNNs with bidirectional long-short-term
memory (LSTM) cells in the hidden layers and connectionist temporal classification in the
output layer. The dataset used by the authors has 5000 printed pages for many languages,
and for Kannada, the authors report the performance of 5.6% character error rate on 3500
pages. However, that database is not publicly available.

1.2 Contributions of this Paper
• A realistic Kannada OCR has been designed and developed from scratch, which can

actually recognize any old, printed page in Kannada, with a very good performance.
It recognizes Indo-Arabic and Kannada numerals, Halegannada characters, as well as
all the frequently used punctuation marks.

• A rich collection of benchmarking test datasets have been created, with annotated
ground truth for Kannada, Konkani, Tulu and Sanskrit languages, all printed using
Kannada script, and have been made openly available. Thus, researchers working on
this topic can now compare their performance on standardized datasets.

• Results of our Lipi Gnani OCR on the above public datasets of Kannada, Tulu,
Konkani and Sanskrit languages have been compared with those of Google’s Tesseract
OCR. These results will form reference results for future research on Kannada OCR.

• Unicode generation in Kannada is involved, and occasionally one needs to deal with a
sequence of four to five graphemes. In some cases, the sequence of Unicodes follows an
order different from the order in which the corresponding symbols occur in the text.
We have come out with systematic rules and flow-charts for Unicode generation from
any sequence of recognized Kannada primitives.

2 KANNADA RECOGNITION UNITS
2.1 Kannada Aksharas
Table 1 lists all the vowels (V), anusvara used for representing pure nasal consonants, visarga,
consonants (C), and Kannada numerals. Table 2 lists the modifiers associated with each
of the vowels, which normally are connected to any of the consonants, to result in the
corresponding C-V combination occurring as a single connected component. As an example,
all the C-V combinations of the consonant ಕ /ka/ are listed.

2.2 Ottus and OCR Challenges Posed by Them
In Kannada, two or three consonants can combine together with a vowel and form a com-
pound character. In such a case, the second and the third consonants become consonant
conjuncts, called ottus, and appear at the bottom or right bottom of the first consonant.
The symbols present in the main line are referred to as the base symbols.

For example, in the word ಅಕ¤ /akka/, the symbol ◌c /ka_ottu/ is the ottu form of ಕ /ka/.
Similarly, in the word �ಾಷ®â /raassttra/, the symbols ◌m /tta_ottu/ and ◌} /ra_ottu/ are the ottu
forms of ಟ /tta/ and ರ /ra/, respectively.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

AGRamakrishnan
Highlight

AGRamakrishnan
Highlight

1:4 H. R. Shiva Kumar and A. G. Ramakrishnan

Table 1. Kannada aksharas and numerals. The Roman names shown for each character are as per the
Kannada Unicode chart [Unicode 2018] except for the names Ru, am & ah, which are used in place of
the Unicode names vocalic_r, anusvara & visarga for the sake of saving space.

ಅ ಆ ಇ ಈ ಉ ಊ ಋ ಎ ಏ ಐ ಒ ಓ ಔ ಂ ಃ
a aa i ii u uu Ru e ee ai o oo au am ah

ಕ ka ಖ kha ಗ ga ಘ gha ಙ nga
ಚ ca ಛ cha ಜ ja ಝ jha ಞ nya
ಟ tta ಠ ttha ಡ dda ಢ ddha ಣ nna
ತ ta ಥ tha ದ da ಧ dha ನ na
ಪ pa ಫ pha ಬ ba ಭ bha ಮ ma

ಯ ya ರ ra ಱ rra ಲ la ವ va ಶ sha ಷ ssa ಸ sa ಹ ha ಳ lla ೞ llla

೦ ೧ ೨ ೩ ೪ ೫ ೬ ೭ ೮ ೯
zero one two three four five six seven eight nine

Table 2. Illustration of the formation of Kannada compound characters. The first row lists the Kannada
vowels, and the second, their dependent forms (a.k.a. vowel signs). The third row shows the compound
characters formed by the joining of the consonant �್ /k/ with each of the vowel signs.

ಅ ಆ ಇ ಈ ಉ ಊ ಋ ಎ ಏ ಐ ಒ ಓ ಔ ಂ ಃ
◌ಾ ◌ಿ ◌ೀ ◌ು ◌ೂ ◌ೃ ◌ೆ ◌ೇ ◌ೈ ◌ೊ ◌ೋ ◌ೌ ◌ಂ ◌ಃ ◌್

ಕ �ಾ Ą Ąೕ ಕು ಕೂ ಕೃ �ೆ �ೇ �ೈ �ೊ �ೋ �ೌ ಕಂ ಕಃ �್ ◌c
ka kaa ki kii ku kuu kRu ke kee kai ko koo kau kam kah k k_ottu

Some of the ottus (e.g. ◌r /ta_ottu/, ◌e /ga_ottu/, ◌t /da_ottu/) are short and hence, when
a text line contains only such short ottus, it is possible that the ottus form a separate
horizontal line, not vertically overlapping with the main text line of base symbols, as shown
by the example in Fig. 1b. On the other hand, some of the ottus have more height (e.g. ◌c
/ka_ottu/, ◌| /ya_ottu/, ◌} /ra_ottu/) and when one or more such conjuncts are present, they
vertically overlap with the bottom parts of the base characters and form a more complex
line, as shown in the example in Fig. 1a. When the ◌} /ra_ottu/ follows ◌r /ta_ottu/ or ◌m
/tta_ottu/, the two ottus are printed one below the other, forming a ottu complex, as shown
in Fig. 1c. The situation becomes more complex, when a ottu or its ascender touches the
base character above and forms a merged character, as shown in Fig. 1d.

Interestingly, the vowel at the end of the consonant cluster modifies the shape of the first
consonant present in the main text line. For example, in the word �ಾ¾ಯĬ©ತ³ /praayashcittaa/,
for the first consonant cluster �ಾ¾ /praa/, the vowel at the end ◌ಾ /aa/ modifies the grapheme
of the first consonant �್ /p/. Similarly, for the second consonant cluster Ĭ© /shci/, the vowel
at the end ◌ಿ /i/ modifies the grapheme of the first consonant ¢್ /sh/ in the text, but the
phoneme of the second consonant in the uttered word.

2.3 Recognition Units for a Realistic Kannada OCR
Table 3 lists the various distinct symbols used in Kannada script. Each of these symbols nor-
mally appears as a single connected component in the scanned image. The top row lists the
independent vowels. The last row lists the Kannada numerals, visarga and anuswara/zero.
The rest of the rows list the consonants with their various vowel combinations. The last

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:5

(a)

(b)

(c)

(d)
Fig. 1. Sample Kannada images, showing the consonant conjuncts (ottus), their varying sizes and spatial
positions with respect to the main text line. (a) Ottus protrude up into the main text line. (b) Ottus
form a separate horizontal line. (c) Two ottus stacked vertically one below the other. (d) Some ottus
and base characters touch the other characters in the main text line and form merged characters.

column lists the consonants in their ottu form. The last but one column lists the pure conso-
nants, which are consonants without any vowel attached to them. The vowel remover (a.k.a.
halant) is denoted as /-a/, and ottu as /_ottu/.

The symbol ಂ shown in the last row of Table 3 can represent either anusvara (as in ಅಂ
/am/, ಕಂ /kam/, ಚಂ /cam/) or numeral zero and needs disambiguation based on the word
context. The symbol ೯ can represent either numeral nine or an alternate ottu form of ರ /ra/
called arkaa-ottu as in the word ಸೂಯ� /suurya/. The symbol , henceforth referred to as
dheergha, is used to represent the long (stressed) form of some of the dependent vowels as
in Ąೕ /kii/, �ೇ /kee/ and �ೋ /koo/. Similarly, the symbol represents the dependent form of
the vowel ಋ /vocalic_r/ as in ಕೃ /kRu/, and the symbol is the dependent form of vowel ಐ
/ai/ as in �ೈ /kai/. These are illustrated in Table 4.

The symbol ೠ /vocalic_rr/ which was earlier taught as representing the longer form of
vowel ಋ /vocalic_r/, is practically non-existent in actual text. Hence we have dropped it
from our symbol set.

The Halegannada (meaning old Kannada) had other consonants such as ಱ /rra/ (the
stressed ರ /ra/) and ೞ /llla/ (the stressed ಳ /lla/), equivalents of which are still present
in modern Tamil and Malayalam. So, the older poems and printed books contain these
additional consonants and their vowel-modified forms. In old letterpress printed documents,
like the example shown in Fig. 6c, the symbols representing some of the dependent vowels
have been printed as separate characters after the base components. For example, �ಾ /kaa/,
ಕು /ku/, ಕೂ /kuu/, �ೊ /ko/ and �ೌ /kau/ are printed as , ಕ , ಕ , �ೆ and , respectively.
Similarly, the modifier symbol halant used for indicating any pure consonant has been
printed separate from the base component (consonant part of CVs) as in . Also, the base
components printed before , and appear in a slightly cut form, as shown in the first
column of Table 5.

Table 6 lists the additional recognition units necessitated by the touching of multiple ottus
in an inseparable way, in some of the old books. Table 7 lists the non-Kannada recognition
units handled by the OCR. This includes the Indo-Arabic numerals from 1 to 9, eight
punctuation symbols, the exclamation and question marks, forward slash as well as a few

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:6 H. R. Shiva Kumar and A. G. Ramakrishnan

Table 3. Kannada recognition units: independent vowels, consonants with/without vowel modifiers, pure
consonants and ottus.

ಅ ಆ ಇ ಈ ಉ ಊ ಋ ಎ ಏ ಐ ಒ ಓ ಔ
a aa i ii u uu Ru e ee ai o oo au -a _ottu

ಕ /ka/ �ಾ Ą Ąೕ ಕು ಕೂ ಕೃ �ೆ �ೇ �ೈ �ೊ �ೋ �ೌ �್ ◌c
ಖ /kha/ �ಾ ą ಖು ಖೂ �ೆ �ೊ �ೌ �್ ◌d
ಗ /ga/ �ಾ Ć ಗು ಗೂ �ೆ �ೊ �ೌ �್ ◌e
ಘ /gha/ �ಾ Ĉ ಘು ಘೂ �ೆ �ೊ �ೌ �್ ◌f
ಙ /nga/ �ಾ ಙಿ ಙು ಙೂ �ೆ �ೊ �ೌ �್ ◌g
ಚ /ca/ �ಾ ċ ಚು ಚೂ �ೆ �ೊ �ೌ �್ ◌h
ಛ /cha/ �ಾ Č ಛು ಛೂ �ೆ �ೊ �ೌ �್ ◌i
ಜ /ja/ �ಾ č ಜು ಜೂ �ೆ �ೊ �ೌ �್ ◌j
ಝ /jha/ �ಾ Ď ಝು ಝೂ ď š �ೌ �್ ◌k
ಞ /nya/ �ಾ ಞಿ ಞು ಞೂ �ೆ �ೊ �ೌ �್ ◌l
ಟ /tta/ �ಾ đ ಟು ಟೂ �ೆ �ೊ �ೌ �್ ◌m
ಠ /ttha/ �ಾ Ē ಠು ಠೂ �ೆ �ೊ �ೌ �್ ◌n
ಡ /dda/ �ಾ ē ಡು ಡೂ �ೆ �ೊ �ೌ �್ ◌o
ಢ /ddha/ �ಾ Ĕ ಢು ಢೂ �ೆ �ೊ �ೌ �್ ◌p
ಣ /nna/ �ಾ ĕ ಣು ಣೂ �ೆ �ೊ �ೌ �್ ◌q
ತ /ta/ �ಾ Ė ತು ತೂ �ೆ �ೊ �ೌ �್ ◌r
ಥ /tha/ �ಾ ė ಥು ಥೂ �ೆ �ೊ �ೌ �್ ◌s
ದ /da/ �ಾ Ę ದು ದೂ �ೆ �ೊ �ೌ �್ ◌t
ಧ /dha/ �ಾ ę ಧು ಧೂ �ೆ �ೊ �ೌ �್ ◌u
ನ /na/ �ಾ Ě ನು ನೂ �ೆ �ೊ �ೌ �್ ◌v
ಪ /pa/ �ಾ ě ಪY ಪw �ೆ Ś �ೌ �್ ◌w
ಫ /pha/ �ಾ Ĝ ಫY ಫw �ೆ ğ �ೌ �್ ◌x
ಬ /ba/ �ಾ Ġ ಬು ಬೂ �ೆ �ೊ �ೌ �್ ◌y
ಭ /bha/ �ಾ ġ ಭು ಭೂ �ೆ �ೊ �ೌ �್ ◌z
ಮ /ma/ �ಾ Ģ ಮು ಮೂ ģ ś �ೌ �್ ◌{
ಯ /ya/ �ಾ ĥ ಯು ಯೂ Ħ Ť �ೌ �್ ◌|
ರ /ra/ �ಾ Ĩ ರು ರೂ �ೆ �ೊ �ೌ �್ ◌}
ಱ /rra/ �ಾ ಱಿ ಱು ಱೂ �ೆ �ೊ �ೌ �್ ◌�
ಲ /la/ �ಾ ĩ ಲು ಲೂ �ೆ �ೊ �ೌ �್ ◌~
ಳ /lla/ ಾ Ī ಳು ಳೂ ೆ ೊ ೌ ್ ◌�
ೞ /llla/ ೞಾ ೞಿ ೞು ೞೂ ೞೆ ೞೊ ೞೌ ೞ್
ವ /va/ ¡ಾ ī ವY ವw ¡ೆ Ŝ ¡ೌ ¡್ ◌�
ಶ /sha/ ¢ಾ Ĭ ಶು ಶೂ ¢ೆ ¢ೊ ¢ೌ ¢್ ◌�
ಷ /ssa/ £ಾ ĭ ಷು ಷೂ £ೆ £ೊ £ೌ £್ ◌�
ಸ /sa/ ¡ಾ Į ಸು ಸೂ ¡ೆ ¡ೊ ¡ೌ ¡್ ◌�
ಹ /ha/ ¢ಾ į ಹು ಹೂ ¢ೆ ¢ೊ ¢ೌ ¢್ ◌�

ಃ ೦ ೧/1 ೨/2 ೩/3 ೪/4 ೫/5 ೬/6 ೭/7 ೮/8 ೯/9
visarga anusvara/zero one two three four five six seven eight nine / �್

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:7

Table 4. Kannada recognition units that need disambiguation based on the preceding unit and the
dependent vowels that appear as separate symbols.

Glyph Possible Characters

ಂ Anusvara or Kannada digit 0
೯ Kannada digit 9 or arkaa-ottu (ರ ◌್)

/ii/

Ą /ki/ Ąೕ /kii/
�ೆ /ke/ �ೇ /kee/
�ೊ /ko/ �ೋ /koo/

/Ru/

ಕ /ka/ ಕೃ /kRu/

/ai/

�ೆ /ke/ �ೈ /kai/

other symbols used as sentence-ending periods (danda or double-danda used in poetic text)
and avagraha. The avagraha symbol ಽ is used in Kannada script for representing elongated
vowels in poetic text, mainly borrowed from Sanskrit. In addition, all the Roman characters,
both upper and lower case, are also recognized by the OCR.

An OCR is most useful to digitize old, rather than new books. Thus, a good Kannada
OCR needs to handle all of these different possibilities. All the symbols shown in Tables 3,
5, 6 and 7 together form the set of 390 units that are recognized by our OCR.

3 THE DESIGN OF LIPI GNANI
Figure 2 gives the block diagram of the various steps performed by our Kannada OCR.
The input image is first binarized. The skew angle is detected by Hough transform and
the original gray image is corrected by bilinear interpolation and re-binarized. Then the
skew-corrected binarized image is segmented into lines, words, and characters/symbols. The
segmented words are tested to detect and correct italic formatting, if any. The symbols in
our case are horizontally overlapping connected components as shown in Tables 3, 5, 6 and
7. Symbol segmentation is followed by feature extraction, classification and Viterbi based
selection of the best sequence of classifier outputs using symbol-level bigram probability.
Finally, the Unicodes of the recognized symbols are concatenated in the correct order to
generate the word level Unicode string.

3.1 Text Block Selection, Skew Correction and Binarization
In our OCR, we have skipped the implementation of automatic text block extraction, but
instead provide an intuitive GUI, where users can draw rectangles and specify text blocks
for a multi-column input page. If no text blocks are specified, then we assume the input
image to contain a single text block.

As explained in [Ashwin and Sastry 2002], the presence of short horizontal line on top of
most of the Kannada characters ensures that the Hough transform technique for detecting
skew [Srihari and Govindaraju 1989] works well for Kannada. Hence, we employ Hough
transform to detect any skew introduced during scanning. The resolution with which the
skew angle is detected is 0.1◦. Our experiments show that the classifier’s performance is not
affected by a very small skew angle of 0.25◦. Hence, if the detected skew angle θS is greater
than 0.25◦, then we correct the skew by rotating the original gray-level image [Aparna and
Ramakrishnan 2002] in the opposite direction (by an angle of −θS) and, then binarize the
skew corrected image as explained below.

To make sure there is no loss of information during scanning, we recommend the input
document to be scanned as a gray-level image at a minimum resolution of 300 dpi and
the scanned image to be saved in uncompressed image format (like uncompressed TIFF).
Since information we need for text recognition is innately binary (text-ink present or not),
we binarize the input image using an effective binarization algorithm to make sure that

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:8 H. R. Shiva Kumar and A. G. Ramakrishnan

Table 5. Additional Kannada recognition units arising due to the nature of printing in some old letterpress
printed documents. The glyphs in the first column and the title row are additional symbols that are
used to form the aksharas shown in the rest of the rows and columns.

/aa/ /au/ /halant/ /u/ /uu/ /uu/

/k/ �ಾ /kaa/ �ೌ /kau/ �್ /k/ ಕ /ka/ ಕು /ku/ ಕೂ /kuu/ �ೆ /ke/ �ೊ /ko/
/kh/ �ಾ �ೌ �್ ಖ ಖು ಖೂ �ೆ �ೊ

/g/ �ಾ �ೌ �್ ಗ ಗು ಗೂ �ೆ �ೊ
/gh/ �ಾ �ೌ �್ ಘ ಘು ಘೂ �ೆ �ೊ

ಙ /ng/ �ಾ �ೌ �್ ಙ ಙು ಙೂ �ೆ �ೊ
/c/ �ಾ �ೌ �್ ಚ ಚು ಚೂ �ೆ �ೊ
/ch/ �ಾ �ೌ �್ ಛ ಛು ಛೂ �ೆ �ೊ
/j/ �ಾ �ೌ �್ ಜ ಜು ಜೂ �ೆ �ೊ

ಞ /ny/ �ಾ �ೌ �್ ಞ ಞು ಞೂ �ೆ �ೊ
/tt/ �ಾ �ೌ �್ ಟ ಟು ಟೂ �ೆ �ೊ
/tth/ �ಾ �ೌ �್ ಠ ಠು ಠೂ �ೆ �ೊ
/dd/ �ಾ �ೌ �್ ಡ ಡು ಡೂ �ೆ �ೊ
/ddh/ �ಾ �ೌ �್ ಢ ಢು ಢೂ �ೆ �ೊ
/nn/ �ಾ �ೌ �್ ಣ ಣು ಣೂ �ೆ �ೊ
/t/ �ಾ �ೌ �್ ತ ತು ತೂ �ೆ �ೊ
/th/ �ಾ �ೌ �್ ಥ ಥು ಥೂ �ೆ �ೊ
/d/ �ಾ �ೌ �್ ದ ದು ದೂ �ೆ �ೊ
/dh/ �ಾ �ೌ �್ ಧ ಧು ಧೂ �ೆ �ೊ
/n/ �ಾ �ೌ �್ ನ ನು ನೂ �ೆ �ೊ
/p/ �ಾ �ೌ �್ - - - - -
/ph/ �ಾ �ೌ �್ - - - - -
/b/ �ಾ �ೌ �್ ಬ ಬು ಬೂ �ೆ �ೊ
/bh/ �ಾ �ೌ �್ ಭ ಭು ಭೂ �ೆ �ೊ
/r/ �ಾ �ೌ �್ ರ ರು ರೂ �ೆ �ೊ
/l/ �ಾ �ೌ �್ ಲ ಲು ಲೂ �ೆ �ೊ
/ll/ ಾ ೌ ್ ಳ ಳು ಳೂ ೆ ೊ
/v/ ¡ಾ ¡ೌ ¡್ - - - - -

¢ಾ ¢ೌ ¢್ ಶ ಶು ಶೂ ¢ೆ ¢ೊ
/ss/ £ಾ £ೌ £್ ಷ ಷು ಷೂ £ೆ £ೊ
/s/ ¡ಾ ¡ೌ ¡್ ಸ ಸು ಸೂ ¡ೆ ¡ೊ
/h/ ¢ಾ ¢ೌ ¢್ ಹ ಹು ಹೂ ¢ೆ ¢ೊ

/u/ /aa∗/ /u∗/ /uu∗/ /au∗/ /halant∗/

/jha_part/ ಝ /jha/ �ಾ /jhaa/ ಝು /jhu/ ಝೂ /jhuu/ �ೌ /jhau/ �್ /jh/
ವ /va/ ಮ /ma/ �ಾ /maa/ ಮು /mu/ ಮೂ /muu/ �ೌ /mau/ �್ /m/

/ya_part/ ಯ /ya/ �ಾ /yaa/ ಯು /yu/ ಯೂ /yuu/ �ೌ /yau/ �್ /y/

/u/

/jhi_part/ Ď /jhi/
ī /vi/ Ģ /mi/

/yi_part/ ĥ /yi/

/u/ /uu/

/jhe_part/ ď /jhe/ š /jho/
¡ೆ /ve/ ģ /me/ ś /mo/

/ye_part/ Ħ /ye/ Ť /yo/

/u/ /uu/

ಝ /jha/ ಝು /jhu/ ಝೂ /jhuu/
ಮ /ma/ ಮು /mu/ ಮೂ /muu/
ಯ /ya/ ಯು /yu/ ಯೂ /yuu/

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:9

Table 6. Additional Kannada recognition units formed by the touching of multiple ottus.

Glyph Unicode Sequence Example
/kRu_ottu/ ◌್/-a/ ಕ/ka/ ◌ೃ /Ru/ ಸಂಸ¤ೃĖ /samskRuti/
/ttra_ottu/ ◌್/-a/ ಟ/tta/ ◌್/-a/ ರ/ra/ �ಾಷ®â /rassttra/
/tra_ottu/ ◌್/-a/ ತ/ta/ ◌್/-a/ ರ/ra/ ¢ಾಸ³â /shastra/
/pra_ottu/ ◌್/-a/ ಪ/pa/ ◌್/-a/ ರ/ra/ ಜಗತ¸âĮದ¶ /jagatprasidda/
/vra_ottu/ ◌್/-a/ ವ/va/ ◌್/-a/ ರ/ra/ ĘಗÂâತ /digvrata/
/rai_ottu/ ◌್/-a/ ರ/ra/ ◌ೈ /ai/ �ೆ¾ೖಸ³ /kraista/

Table 7. Indo-Arabic numerals and special symbols handled.

1 2 3 4 5 6 7 8 9 । ॥
? () [] : ; ! / | ಽ
. , ‘ ’ ' -

Input image

Binarization

Skew Detection & Correction

Text Line Segmentation

Italic Detection & Correction

Word Segmentation

Symbol Segmentation

Type Identification

Base Symbols
Classification

Ottus
Classification

Punctuations
Classification

Viterbi based Word formation

Unicode generation

Anomalies
detected?

Handle merges and splits

recognized text

Yes

No

Fig. 2. Block Diagram of Lipi Gnani - the Kannada OCR.

individual characters/symbols are not cut and consecutive symbols are not merged. Otsu’s
global thresholding algorithm [Otsu 1979] performs well for good quality documents and

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:10 H. R. Shiva Kumar and A. G. Ramakrishnan

Fig. 3. Sample Kannada text line showing ottus and their position with respect to foreline and baseline.

that is what we have implemented at the first level. However, in the case of degraded
documents, we need better binarization techniques and this is addressed in Section 3.7.

3.2 Line, Word and Character Segmentation and Italic Correction
For text line segmentation, we use a bottom up approach based on the sizes and the relative
positions of the connected components in the document page.

It is well known that the angle of tilt in italic text is normally around 15◦. Hence, for
slant/italic detection and correction, the line image is sheared [Sun and Si 1997] at different
angles in steps of 2◦ up to 20◦ and the vertical projection profile (VPP) is taken at every step.
The image corresponding to the VPP with maximum character/word gaps is considered as
the italics corrected image and is used for word segmentation.

The character and the word gaps generally increase with the font size of the characters.
The height of a text line is directly proportional to the font size. However, in Kannada, the
complete line height varies, since it includes the height of the ottus, if present. Hence, we
use the foreline to baseline height as the reference. Empirically, the character gap threshold
is obtained as 0.35 times this reference height. Thus, we classify the gaps between symbols
(zeros in vertical projection profile) into either inter-word gaps or intra-word gaps by using
this adaptive threshold.

Kannada has a few consonants such as ಪ /pa/ and ಸ /sa/, which can have 3 unconnected
components one above the other. Therefore, for symbol segmentation, we extract the con-
nected components (CCs) and group CCs that have significant horizontal overlap above
the base-line into one symbol. For example, in the word ಸ�ಂತ, the segmented symbols are
ಸ, ◌�, ಂ and ತ. Incidentally, this step takes care of any split in the character in the vertical
direction.

3.3 Handling of Ottus and Special Symbols
Ottu symbols are printed below the base symbols and most of them occur completely below
the baseline. However, in the case of some ottus, a small portion extends up above the
baseline, as shown in Figures 3 and 1a. This relative position of the ottu symbols with
respect to the text line is leveraged for recognizing them separately from the rest of the
symbols. Once a connected component is identified as belonging to the ottu group, we
recognize it by extracting features from its 32 × 32 normalized image and passing them to
a separate SVM classifier trained only on ottu symbols.

The numerals and the special symbols listed in the first and second rows of Table 7 are
recognized along with the rest of the base symbols by the primary SVM classifier. However,
the punctuation marks listed in the third row of Table 7, namely the dot(.), comma(,), left
single quotation(‘), right single quotation(’), apostrophe(') and hyphen(-) are recognized
directly, independent of the rest of the symbols, using their position relative to the baseline
and foreline, size relative to the line height and aspect ratio.

3.4 Feature Extraction and Classification
It was shown in [Vijay Kumar and Ramakrishnan 2002] that Haar wavelet features give
best recognition results for Kannada. Accordingly, the segmented components are resized

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:11

to 32× 32 size and DWT features are extracted from them using Haar wavelet. In addition,
horizontal and vertical autocorrelation-based features [Madhavaraj et al. 2014] are also
extracted and all the above three are concatenated to form a feature vector of dimension
3072. Two SVM classifiers [Chang and Lin 2011; Cortes and Vapnik 1995] with linear kernel
[Fan et al. 2008] are used for classifying the base symbols and ottus. The base SVM has
351 classes and the other SVM has 39 ottus. Both the SVMs are trained with 5-fold cross-
validation to choose the best value of the parameter C.

We have a total of 390 classes handled by the two SVMs together. On the average, we have
collected 200 training samples for each class. These training samples have been collected
from over 35 books published between the period 1970 to 2002, and this includes books
written in Halegannada and pages containing Sanskrit slokas written in Kannada script.
Thus, the training set includes many different font styles, printing styles (letter press Vs.
DTP), and various kinds of degradations. In addition, there is a third SVM, which recognizes
only the Roman characters, which has 47 classes.

3.5 Viterbi Algorithm for Word Formation
In old books with poor print quality, portions of some of the characters are lost either
directly in print or during binarization, as illustrated by the word image in Fig. 4. When
such symbols are fed into the classifier, instead of getting a single recognized class with very
high confidence level, we might get multiple labels, all with low confidence levels. This is
illustrated in Fig. 4, where each of the segmented components is shown above the horizontal
line and the recognized classes, as output by the classifier, are shown below the horizontal
line. The confidence level output by the classifier is shown below each of the recognized
classes. In such cases, mere selection of the top recognized class may yield sub-optimal
recognition results. Thus, in this example, the incorrect Unicode sequence of ಇಲೃĘಜµĩÀ will
result for the word image shown in Fig. 4.

Leveraging symbol level bigram probabilities and the Viterbi algorithm [Forney 1973]
for selecting the optimal sequence of recognized classes increases the chances of correct
recognition, as shown in Fig. 4. Here, the symbol level bigram probabilities are shown on the
edges joining the recognized classes and the optimal path selected by the Viterbi algorithm
is shown using thick edges, yielding the correct Unicode output of ಇಲÀĘದµĩÀ. For extracting
the symbol level bigram probabilities, we have used a dump of Kannada Wikipedia text
and our algorithm for mapping Kannada Unicode text to the corresponding sequence of
Kannada OCR symbols (recognition units).

While the regular Viterbi algorithm uses a fixed number (top-N) of recognition classes
for each segmented symbol, we prune the number of recognition classes considered for each
symbol based on the distribution of confidence levels. Thus, for the first symbol in Fig. 4,
we consider only the best class, since its confidence level is greater than 0.75. However,
for the second symbol, we choose the top-2, since their confidence levels are comparable,
while that of the third class is too low. For the fifth symbol, we go all the way up to the
top-6 classes, since the confidence levels decrease slowly and we stop when two successive
confidence values have a ratio exceeding five.

3.6 Kannada Unicode Generation Module
After symbol segmentation and classification, the recognized labels need to be put together
in the correct order so as to generate a valid Unicode sequence [Unicode 2018] at the word
level. Table 8 gives the Unicode sequences for a few recognition units used in our OCR.
Table 9 lists the accurate Unicode sequences for some sample Kannada words. For the word

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:12 H. R. Shiva Kumar and A. G. Ramakrishnan

Fig. 4. Illustration of Viterbi-based word formation, using a sample degraded word image.

Table 8. Unicodes corresponding to some sample recognition units of our Kannada OCR.

Symbol ಕ/ka/ �ಾ/kaa/ Ą/ki/ ಕು/ku/ ಕೂ/kuu/ �ೆ/ke/ �ೊ/ko/ �ೌ/kau/ �್/k/ ◌c/k_ottu/
Unicodes ಕ ಕ ◌ಾ ಕ ◌ಿ ಕ ◌ು ಕ ◌ೂ ಕ ◌ೆ ಕ ◌ೊ ಕ ◌ೌ ಕ ◌್ ◌್ ಕ

Table 9. The correct Unicode sequences for some sample Kannada words.

Word Unicode Sequence
�ಾಷ®âಪĖ /raassttrapati/ ರ/ra/ ◌ಾ /aa/ ಷ/ssa/ ◌್/-a/ ಟ/tta/ ◌್/-a/ ರ/ra/ ಪ/pa/ ತ/ta/ ◌ಿ /i/
ಸಂಸ¤ೃĖ /samskRuti/ ಸ/sa/ ◌ಂ/am/ ಸ/sa/ ◌್/-a/ ಕ/ka/ ◌ೃ /Ru/ ತ /ta/ ◌ಿ /i/
�ೆ¾ೖಸ³ /kraista/ ಕ/ka/ ◌್/-a/ ರ/ra/ ◌ೈ /ai/ ಸ/sa/ ◌್/-a/ ತ/ta/
ಸೂಯ� /suurya/ ಸ/sa/ ◌ೂ /uu/ ರ/ra/ ◌್/-a/ ಯ/ya/

�ಾಷ®âಪĖ /raassttrapati/, the sequence of segmented and recognized symbols are �ಾ /raa/, ಷ
/ssa/, ◌m /tta_ottu/, ◌} /r_ottu/, ಪ /pa/ and Ė /ti/. Putting together the Unicodes associated
with these symbols in the same order, we get ರ ◌ಾ ಷ ◌್ ಟ ◌್ ರ ಪ ತ ◌ಿ, which matches with
the expected Unicode for that word.

However, for the word �ೆ¾ೖಸ³ /kraista/, the sequence of segmented and recognized symbols
are �ೆ /ke/, ◌} /r_ottu/, /vowel_sign_ai/, ಸ /sa/ and ◌r /t_ottu/. Putting their associated
Unicodes in the same order would give us ಕ ◌ೆ ◌್ ರ ◌ೈ ಸ ◌್ ತ, but the correct Unicode for that
word is ಕ ◌್ ರ ◌ೈ ಸ ◌್ ತ. Similarly, for the word ಸೂಯb /suurya/, the sequence of segmented
and recognized symbols are ಸೂ /suu/, ಯ /ya/ and /arkaaottu/. Putting their associated
Unicodes in the same order would give us ಸ ◌ೂ ಯ ರ ◌್, but the correct Unicode for that
word is ಸ ◌ೂ ರ ◌್ ಯ.

To generate the correct Unicode string at the word level, we use the logic illustrated by
the flowcharts of Fig. 5. From the list of recognized symbols, we first combine part characters
as per Table 5. For example, if the recognized symbols have the sequence and , then
we replace it by �ಾ. Similarly, ನ and is replaced by ನು, and, ವ and is replaced by �ಾ.
The next step, as shown in Fig. 5a, is to group the sequence of recognized symbols into
aksharas. Symbols that represent independent vowels, consonants with/without dependent

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:13

Recognized Symbols

Combine part characters
as per Table 5

Group recognized labels into aksharas.
Independent vowels, consonants with/

without vowel ligatures, pure consonants,
anusvara, visarga, numerals & special

symbols mark the beginning of aksharas.

Get Unicode of each akshara and
concatenate them to get word Unicode

Word Unicode

(a)

Start

S[1,n]

VA = null
i = 1

is i ≤ n ?i = i + 1
is VA ,
null? Stop

U .append(VA)s = S[i]

is s = ?

U .insertAtBeginning(s)

is s = CV
symbol?

U .append(C)
VA = V

is s = or
or ?

VA = resolve(VA, s)

U .append(s)

Yes
No

Yes
No

Yes

No

Yes

No

Yes

No

(b)
Start

VP ,VC

is VC = ? is VP = ? is VP = ? is VP = ?

VO = VO = VO =

Flag error

Stop

is VC = ? is VP = ?

VO =

Flag error

Stop

is VC = ? is VP = null ?

VO =

Flag error

StopStop

Yes

No

No

Yes

No

Yes

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

(c)

Fig. 5. (a) Block diagram for getting the word Unicode from the recognized labels. (b) Flowchart to
generate Unicode for any akshara. The input is the list of recognized labels S. The output is the list of
Unicodes U . VA is used for storing the vowel to be inserted at the end of the akshara. (c) Flowchart for
resolving the vowel sign within the akshara as per Table 4. VP and VC are the labels of the previous and
current vowel modifiers. VO is the resolved label of the output vowel modifier.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:14 H. R. Shiva Kumar and A. G. Ramakrishnan

vowels, numerals and special symbols mark the beginning of aksharas. Symbols , , and
and ottu symbols get added to the previous akshara. In order to keep the logic simple,

we consider anusvara and visarga as separate aksharas. Then, we generate the Unicode for
each akshara as shown in Fig. 5b, and concatenate them to get the word level Unicode.

As shown in Fig. 5b, the idea for generating the correct Unicode at the akshara level is
to concatenate the Unicodes of all the symbols in it with the following exceptions:

• If is present, then insert it at the beginning of the akshara. For example, in the word
ಸೂಯb, for the second akshara ಯb, we now get the correct Unicode ರ ◌್ ಯ.

• If the akshara begins with the symbol of a consonant-vowel combination, then we take
the dependent vowel out and insert it at the end of the akshara. If the akshara has
other vowel modifier symbols in it (such as , or), then we combine it with the first
symbol’s dependent vowel as per Fig. 5c, and insert the combined vowel modifier at
the end of the akshara. For example, in the word ď}Œಸr, for the first akshara ď}Œ, the
first symbol’s vowel modifier ◌ೆ is combined with the vowel modifier symbol to give
the Unicode ◌ೈ, which is then inserted at the end of the akshara, to get the correct
Unicode sequence ಕ ◌್ ರ ◌ೈ.

3.7 Handling of Merges and Splits
Old printed documents often contain broken and merged characters, which bring down the
performance of the OCR, since they give rise to segmented components that do not belong
to any of the recognition units defined earlier. The performance of the OCR is thus further
improved, by handling the issue of broken characters using gamma enhanced binarization
[Shiva Kumar and Ramakrishnan 2019] and splitting the merged characters using simplified
paired valleys and L-cut algorithm [Shiva Kumar et al. 2019].

4 PERFORMANCE EVALUATION - OPEN DATASETS AND METRICS
4.1 Benchmark Dataset of Kannada Printed Pages
The Kannada dataset [MILE lab 2019] contains 250 images, carefully chosen to have various
kinds of recognition challenges. All of these pages have been scanned as gray level images at
300 dpi resolution, and have Unicode ground truth, together with line and word coordinate
information. Figure 6 gives some examples from this benchmark dataset created by us. Some
of the pages have italics and bold characters (see Fig. 6a); some of them have Halegannada
poems and text (see Fig. 6b); others are letterpress-printed pages, where the vowel modifiers
appear as separate symbols and do not touch the consonants they go with (see Fig. 6c). Some
pages have interspersed English words (see Fig. 6d); still others have Tables with a lot of
numeric data (see Fig. 6e). In addition, there are old pages containing either a lot of broken
characters or many words with two or more characters merged into a single connected
component.

4.2 Multilingual Datasets Printed in Kannada Script
Many Kannadigas read the Sanskrit slokas (prayers) printed in Kannada script. In addition,
the languages of Tulu [Wikipedia 2018b] and Konkani [Wikipedia 2018a] do not have dedi-
cated scripts of their own. Almost all of the Tulu works are printed in Kannada script, and
Konkani works are printed in Devanagari, Kannada or Malayalam scripts. Our OCR can
cater to the digitization of documents from any of the above three languages printed in Kan-
nada script. Accordingly, we have created benchmarking datasets for the above languages
also.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:15

(a) A page with italic and bold
text.

(b) A page with Halegannada
letters and text.

(c) A letterpress printed
page: modifiers not con-
nected to consonants.

(d) A two-column page with inter-
spersed English words.

(e) A page with a Table
and Indo-Arabic numerals.

(f) A page with old poetic
text, containiing Kannada
numerals.

Fig. 6. Samples from the Kannada benchmarking test dataset of 250 images.

The Konkani dataset [MILE lab 2018a] contains 40 pages, scanned from different books.
The Tulu [MILE lab 2018c] and the Sanskrit [MILE lab 2018b] datasets have 60 pages each.
These datasets with Kannada Unicode text coming from other languages are good testing
ground for the raw recognition accuracy of the Kannada OCR, since many of the words in
them may not be present in the dictionary of a typical Kannada OCR.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:16 H. R. Shiva Kumar and A. G. Ramakrishnan

4.3 Computation of Recognition Accuracy
Let N be the size of the ground truth (number of Unicodes for Unicode level accuracy
OR number of words for word level accuracy) & M, the size of the OCR output. Both at
the character (Unicode) and the word levels, we compute the number of substitutions S,
insertions I and deletions D, using Levenshtein distance [Wagner and Fischer 1974].

The total error measured and the recognition accuracy are defined as:

Error = S + I + D (1)

Accuracy = (N − Error)/N (2)

5 RESULTS AND DISCUSSION
5.1 Tesseract Version Compared
We compare our recognition results on all the test sets with those of the Google’s Tesseract
OCR. Tesseract was originally developed at Hewlett Packard (HP) between 1985 and 1994,
and was open sourced by HP in 2005. Since 2006, it is being developed by Google. Thus,
this OCR development has a history of over 30 years, backed by two multinational compa-
nies. In a DAS-2016 tutorial [Smith 2016], Tesseract’s T-LSTM engine (available in v4.0.0)
was reported to have the best Unicode and word-level recognition accuracy for Kannada
language. Hence, we tested on the latest version (v4.0.0) of Tesseract with command line
option --oem 1 [Tesseract 2018].

The focus of our testing is on Unicode and word level recognition accuracies. Hence, to
make sure that any possible mistakes in the layout analysis (like text/image block seg-
mentation) does not impact the recognition accuracies, we manually pass the boundary
coordinates of the text region of the test images to Tesseract through uzn [White 2014]
files.

5.2 Results on Kannada Benchmarking Dataset
Figures 7 to 10 display the results obtained from our OCR for some sample image segments
from the test database, as well as the recognition accuracy at Unicode level (UA) and word
level (WA). Figure 7 shows a small part of the scanned image of a Kannada printed page,
where the picture on the other side of the paper is clearly seen through. Our OCR perfectly
recognizes the text present (see bottom part of Fig. 7). Figure 8 shows a portion of the
scanned image of a Kannada printed page with half of the text bold and the rest normal.
The text recognized by Lipi Gnani OCR has only two errors (see bottom part of Fig. 8).
Figure 9 shows a segment of the scanned image of a Kannada printed page with all italic
text. The text recognized by our OCR has very few errors (see bottom part of Fig. 9).
Finally, Fig. 10 shows a small section of the scanned image of a highly degraded Kannada
printed page. This is letterpress printed, and hence, all the vowel modifiers appear clearly
separated from their corresponding consonants. In spite of the degradation present, the text
recognized by our OCR has just three errors (see bottom part of Fig. 10).

Figure 11 compares the performances of Lipi Gnani and Tesseract OCRs on the bench-
mark Kannada dataset. Plotted in the two subfigures are the Unicode and word error rates
obtained by the two OCRs on each of the pages. The Unicode error rate and hence, the
word error rate obtained by our OCR are lower in nearly 200 of the 250 images in the
database. Table 10 compares the average accuracy of the two OCRs on the whole dataset.
Lipi Gnani performs marginally better, with an improvement of 0.84% in UA and 5.36%

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

AGRamakrishnan
Highlight

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:17

Fig. 7. A segment of a Kannada document, where the picture from the other side of the paper is seen
through in the scanned image and the text recognized by Lipi Gnani. UA = 99.09%, WA = 95.12% for
the entire page.

Fig. 8. A small part of the scanned image of a Kannada document with both bold and normal text, and
the text recognized by Lipi Gnani. UA = 96.08%, WA = 78.91% for the complete page. The two, red
bounding boxes indicate wrongly recognized characters.

Fig. 9. A portion of a Kannada document image with italic text and the output text from the Lipi
Gnani OCR, with very few errors. UA = 98.64%, WA = 89.47% for the entire page.

in WA. Table 11 compares the processing times of the two OCRs, on a standard Windows
desktop PC (running on Intel i7 Octacore CPU @3.4 GHz with 16 GB RAM), and we can
see that Lipi Gnani takes only 1.53 seconds per page, as against Tesseract’s 5.46 seconds
per page on the same machine.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

AGRamakrishnan
Highlight

AGRamakrishnan
Highlight

1:18 H. R. Shiva Kumar and A. G. Ramakrishnan

Fig. 10. A segment of an old, letterpress printed, Kannada document page with severe localized degra-
dation, and the text output by Lipi Gnani with negligible recognition errors. UA = 95.35% and WA =
76.96% for the complete page.

Fig. 11. Comparison of Unicode and word level error rates of Lipi Gnani and Tesseract OCRs on each
page of the Kannada benchmarking dataset.

To our pleasant surprise, Lipi Gnani runs as-it-is on Raspberry Pi 4 (with 4 GB RAM
and Raspbian OS) and takes an average of 6.2 seconds per page. We have been using this
setup to digitize hundreds of Kannada books.

5.3 Results on Konkani, Tulu, and Sanskrit Benchmarking Datasets
Figures 12 to 15 display the recognition results from our OCR for segments from one or two
sample pages from each of the non-Kannada language text printed in Kannada. Along with

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

AGRamakrishnan
Highlight

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:19

Table 10. Unicode and word recognition accuracies of Lipi Gnani and Tesseract OCRs on the Kannada
test dataset of 250 images. UA, WA: Unicode and word recognition accuracies. N, M: # of Unicodes in
the ground-truth and the OCR output, respectively. S, I and D: # of Unicode substitutions, insertions
and deletions w.r.t. the ground truth. NW , MW : # of words in the ground-truth and the OCR output,
respectively. SW , IW , DW : # of word substitutions, insertions and deletions w.r.t. the ground truth. N
= 4,07,490; NW = 48,879.

UA (%) M S I D Mw Sw Iw Dw WA(%)

Lipi Gnani 96.25 4,06,554 7,823 3,252 4,188 48,865 7,520 758 772 81.48
Tesseract 95.41 4,12,030 8,970 7,140 2,600 49,757 9,725 1,412 534 76.12

Table 11. Processing times of Lipi Gnani and Tesseract OCRs on Kannada benchmarking dataset of
250 images, run on a Windows 7 desktop having Intel i7 Octacore CPU @3.4 GHz with 16 GB RAM.

Total time (250 images) Average time per page

Lipi Gnani 6 mins 23 secs 1.53 secs
Tesseract 22 mins 45 secs 5.46 secs

Fig. 12. A segment from the scanned image of a Konkani document and the corresponding text recog-
nized by Lipi Gnani. UA = 94.38% and WA = 79.15% for the full page.

the recognized text, each figure also shows the overall UA and WA achieved on the whole
page, from which the segment being displayed arises. A small part of the scanned image of
a Konkani document is shown at the top of Fig. 12. Also shown is the text output from
our OCR, at the bottom part of the figure. Figure 13 shows a portion of the scanned image
of another Konkani printed page. The text recognized by Lipi Gnani OCR, shown on the
right, is nearly perfect. Figure 14 shows an example from a Sanskrit printed page. The text
recognized by our OCR has only one wrong character (see the bottom of Fig. 14). Another
Sanskrit example is shown in Fig. 15. Again, there is a single error in the text recognized
by our OCR (see the right hand side of Fig. 15).

Figure 16 compares the performances of Lipi Gnani and Tesseract OCRs on the pages
of the other language datasets. Plotted in the two subfigures are the Unicode and word
error rates obtained by the two OCRs on each of the test pages. It is clear that Lipi Gnani
consistently has lower Unicode and word error rates, except for very few pages.

Table 12 compares the average accuracy of the two OCRs on the three datasets. Though
the mean UA for both the OCRs is above 90% on all the datasets, the WA performance
of Lipi Gnani is significantly better for Konkani and Tulu, being higher by 23.4% and

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:20 H. R. Shiva Kumar and A. G. Ramakrishnan

Fig. 13. A part of Konkani document page containing poetic text from another book, and the text
recognized by our OCR. UA = 96.11% and WA = 79.26% for the entire page.

Fig. 14. A snippet from a Sanskrit document and the text recognized by Lipi Gnani. UA = 92.13% and
WA = 71.88% for the full page.

Fig. 15. A snippet from another Sanskrit document and the text recognized by Lipi Gnani. UA = 93.6%
and WA = 67.35% for the complete page.

24% respectively, than that of Tesseract. Even for Sanskrit, the increase in word accuracy is
more than 8.5%. This shows that a dictionary-based postprocessing or a vocabulary-learning
classifier such as LSTM is a disadvantage, when dealing with out-of-vocabulary text, which
typically happens with text that is transliterated from another language.

6 CONCLUSION
A full-fledged, Kannada OCR has been developed, with all the image processing routines
implemented using Java. This has resulted in a computationally efficient, readily usable
OCR on Windows, Linux and Mac OS. The OCR is invoked inside a user-friendly GUI,
also developed by us in Java. The GUI has facility to recognize individual scanned pages
or all the pages of an entire book. The latter facility was specifically added to help the
NGO’s create Braille versions of school texts for the use of blind children. Thus, the output
text of the OCR can be saved in .rtf, .xml or Braille format. It also has provision to save
the recognized Unicode text, and the line and word boundaries in the industry standard
METS/ALTO XML [Standards 2015, 2019] format.

This has led to the use of our Lipi Gnani OCR by several NGO’s working for the blind as
well as by www.kannadapustaka.org, which has made available all the Kannada school books

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

AGRamakrishnan
Highlight

AGRamakrishnan
Highlight

AGRamakrishnan
Highlight

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:21

Fig. 16. Comparison of Unicode and word level error rates of Lipi Gnani and Tesseract OCRs on each
page of Konkani, Sanskrit and Tulu benchmark datasets.
Table 12. Unicode and word level accuracies of Lipi Gnani and Tesseract OCRs on Konkani (40 pages;
N = 45,063; NW = 6,889), Sanskrit (60 pages; N = 25,196; NW = 3,606) and Tulu (60 pages; N =
91,023; NW = 12,372) datasets. All the notations are the same as in Table 10.

Dataset OCR UA (%) M S I D MW SW IW DW WA (%)

Konkani Lipi Gnani 94.92 44,616 1,371 236 683 6,749 1,036 26 166 82.17
Tesseract 91.23 45,512 1,774 1,314 865 6,479 2,176 127 537 58.77

Sanskrit Lipi Gnani 94.13 24,983 807 230 443 3,618 577 32 20 82.56
Tesseract 92.36 25,340 807 631 487 3,685 756 130 51 74.02

Tulu Lipi Gnani 97.24 90,511 1,232 384 896 12,277 1,406 10 105 87.71
Tesseract 93.30 94,722 1,624 4,089 390 12,387 4,371 65 50 63.74

from eighth standard to PUC as both Braille books and audio books. This contribution was
also recognized by the Digital Empowerment Foundation in giving us the Manthan Award
in 2014 under the category of E-Inclusion & Accessibility [Ramakrishnan and Shiva Kumar

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

1:22 H. R. Shiva Kumar and A. G. Ramakrishnan

2014]. Together with the PrintToBraille GUI developed by us, it has already been used by
some blind students to convert their text books into Unicode text and for reading by a
text-to-speech engine. This OCR has now been licensed to RaGaVeRa Indic Technologies
by the Indian Institute of Science and is being used to digitize hundreds of Kannada books
by another startup, BhaShiNi Digitization Services.

In future, it is intended to incorporate separate dictionaries for each of Kannada, Konkani,
Sanskrit and Tulu, and provide the option to the user to select the appropriate dictionary,
to obtain the best possible performance for each of the languages.

7 ACKNOWLEDGMENTS
We thank Dr. Jayachandra Shenoy and the Kashi Mutt, Malleswaram, Bangalore for helping
us with Konkani books. We thank Mrs. Bhargavi Shivakumar for verifying and correcting
the ground truth for all the test images used in this study.

REFERENCES
K.G. Aparna and A.G. Ramakrishnan. 2002. A complete Tamil optical character recognition system. In

Fifth IAPR International Workshop on Document Analysis Systems (DAS 2002). Springer-Verlag Berlin,
53–57.

T.V. Ashwin and P.S. Sastry. 2002. A font and size-independent OCR system for printed Kannada docu-
ments using support vector machines. Sadhana 27, 1 (Feb 2002), 35–58.

Veena Bansal and R.M.K. Sinha. 2000. Integrating knowledge sources in Devanagari text recognition system.
IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans 30, 4 (2000), 500–505.

Veena Bansal and R.M.K. Sinha. 2002. Segmentation of touching and fused Devanagari characters. Pattern
recognition 35, 4 (2002), 875–893.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2 (2011). Issue 3. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

B.B. Chaudhuri, O. A. Kumar, and K.V. Ramana. 1991. Automatic generation and recognition of Telugu
script characters. IETE Journal of Research 37 (1991), 499–511.

Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Machine learning 20, 3 (1995),
273–297.

D. Dhanya, A.G. Ramakrishnan, and Peeta Basa Pati. 2002. Script identification in printed bilingual
documents. Sadhana 27, 1 (2002), 73–82.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A
Library for Large Linear Classification. Journal of Machine Learning Research 9 (2008), 1871–1874.

G. David Forney. 1973. The Viterbi algorithm. Proc. IEEE 61, 3 (1973), 268–278.
Venu Govindaraju and Srirangaraj Ranga Setlur. 2009. Guide to OCR for Indic Scripts: Document Recog-

nition and Retrieval. Springer Science & Business Media.
Rangachar Kasturi, Lawrence O’gorman, and Venu Govindaraju. 2002. Document image analysis: A primer.

Sadhana 27, 1 (2002), 3–22.
Aparna Kokku and Srinivasa Chakravarthy. 2009. A Complete OCR System for Tamil Magazine Documents.

In Guide to OCR for Indic Scripts. Springer, 147–162.
Praveen Krishnan, Naveen Sankaran, Ajeet Kumar Singh, and C.V. Jawahar. 2014. Towards a Robust OCR

System for Indic Scripts. In 2014 11th IAPR International Workshop on Document Analysis Systems
(DAS 2014). IEEE, 141–145.

Gurpreet Singh Lehal and Chandan Singh. 2000. A Gurmukhi script recognition system. In Proc. 15th
International Conf. on Pattern Recognition (ICPR), Vol. 2. IEEE, 557–560.

Gurpreet Singh Lehal and Chandan Singh. 2002. A post-processor for Gurmukhi OCR. Sadhana 27, 1
(2002), 99–111.

A. Madhavaraj, A.G. Ramakrishnan, H.R. Shiva Kumar, and Nagaraj Bhat. 2014. Improved recognition
of aged Kannada documents by effective segmentation of merged characters. In Signal Processing and
Communications (SPCOM), 2014 International Conference on. IEEE, 1–6.

Minesh Mathew, Ajeet Kumar Singh, and C.V. Jawahar. 2016. Multilingual OCR for Indic scripts. In 12th
IAPR Workshop on Document Analysis Systems (DAS 2016). IEEE, 186–191.

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Lipi Gnani - A Versatile OCR for Documents in any Language Printed in Kannada Script 1:23

IISc MILE lab. 2018a. Dataset of Konkani documents printed using Kannada script. (Dec 2018). Retrieved
December 30, 2018 from https://github.com/MILE-IISc/KonkaniDocumentsInKannadaScript

IISc MILE lab. 2018b. Dataset of scanned images of Sanskrit text printed using Kannada script. (Dec 2018).
Retrieved December 30, 2018 from https://github.com/MILE-IISc/SanskritPagesUsingKannadaScript

IISc MILE lab. 2018c. Dataset of scanned pages of Tulu books. (Dec 2018). Retrieved December 30, 2018
from https://github.com/MILE-IISc/TuluDocuments

IISc MILE lab. 2019. Dataset of 250 Kannada documents carefully chosen to have various kinds of
recognition challenges. (May 2019). Retrieved May 28, 2019 from https://github.com/MILE-IISc/
Kannada-OCR-test-images-with-ground-truth

P. Nagabhushan and Radhika M. Pai. 1999. Modified region decomposition method and optimal depth deci-
sion tree in the recognition of non-uniform sized characters–An experimentation with Kannada characters.
Pattern Recognition Letters 20, 14 (1999), 1467–1475.

Premkumar S. Natarajan, Ehry MacRostie, and Michael Decerbo. 2005. The BBN Byblos Hindi OCR
system. In Document Recognition and Retrieval XII (DRR 2005), Vol. 5676. SPIE, 10–17.

N.V. Neeba, Anoop Namboodiri, C.V. Jawahar, and P.J. Narayanan. 2009. Recognition of Malayalam
Documents. In Guide to OCR for Indic Scripts. Springer, 125–146.

Atul Negi, Chakravarthy Bhagvati, and B. Krishna. 2001. An OCR system for Telugu. In Proceedings of
Sixth International Conference on Document Analysis and Recognition (ICDAR 2001). IEEE, 1110–
1114.

Nobuyuki Otsu. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics 9, 1 (1979), 62–66.

Umapada Pal and B.B. Chaudhuri. 1994. OCR in Bangla: an Indo-Bangladeshi language. In Proceedings
of the 12th IAPR International Conference on Pattern Recognition.

Peeta Basa Pati and A. G. Ramakrishnan. 2000. Machine recognition of printed Odiya text. Master’s
Thesis, Department of EE, Indian Institute of Science, Bangalore (2000).

Peeta Basa Pati, A. G. Ramakrishnan, and U.K.A. Rao. 2000. Machine recognition of printed Odiya
characters. In Proc. III International Conference on Information Technology (ICIT 2000).

S.N.S. Rajasekaran and B.L. Deekshatulu. 1977. Recognition of printed Telugu characters. Computer
graphics and image processing 6, 4 (1977), 335–360.

A.G. Ramakrishnan and H.R. Shiva Kumar. 2014. Manthan Award 2014. E-Inclusion & Accessibilty -
Winner (2014). http://manthanaward.org/e-inclusion-accessibilty-winner-2014/

Tony M. Rath and Rudrapatna Manmatha. 2007. Word spotting for historical documents. International
Journal of Document Analysis and Recognition (IJDAR) 9, 2-4 (2007), 139–152.

H.R. Shiva Kumar, A. Madhavaraj, and A.G. Ramakrishnan. 2019. Splitting Merged Characters of Kannada
Benchmark Dataset using Simplified Paired-Valleys and L-Cut. In Proc. 25th National Conference on
Communication.

H.R. Shiva Kumar and A.G. Ramakrishnan. 2019. Gamma Enhanced Binarization - An Adaptive Nonlinear
Enhancement of Degraded Word Images for Improved Recognition of Split Characters. In Proc. 25th
National Conference on Communication.

R.M.K. Sinha and H.N. Mahabala. 1979. Machine recognition of Devanagari script. IEEE Trans. on
Systems, Man, and Cybernetics 9, 8 (1979), 535–441.

Ray Smith. 2016. Building a Multilingual OCR Engine. (Jun 2016). Retrieved June
20, 2016 from https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%
20Multi-Lingual%20OCR%20Engine.pdf

Sargur N Srihari and Venugopal Govindaraju. 1989. Analysis of textual images using the Hough transform.
Machine vision and Applications 2, 3 (1989), 141–153.

The Library of Congress Standards. 2015. METS: Metadata Encoding & Transmission Standard. (Jan
2015). Retrieved June 19, 2019 from http://www.loc.gov/standards/mets/

The Library of Congress Standards. 2019. ALTO: Technical Metadata for Layout and Text Objects. (May
2019). Retrieved June 19, 2019 from http://www.loc.gov/standards/alto/

Changming Sun and Deyi Si. 1997. Skew and slant correction for document images using gradient direction.
In Proceedings of the Fourth International Conference on Document Analysis and Recognition, Vol. 1.
IEEE, 142–146.

Tesseract. 2018. Tesseract Manual. (Dec 2018). Retrieved December 15, 2018 from https://github.com/
tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc

Consortium Unicode. 2018. The Unicode Standard v11.0 U0C80. (Jun 2018). Retrieved June 5, 2018 from
https://unicode.org/charts/PDF/U0C80.pdf

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

https://github.com/MILE-IISc/KonkaniDocumentsInKannadaScript
https://github.com/MILE-IISc/SanskritPagesUsingKannadaScript
https://github.com/MILE-IISc/TuluDocuments
https://github.com/MILE-IISc/Kannada-OCR-test-images-with-ground-truth
https://github.com/MILE-IISc/Kannada-OCR-test-images-with-ground-truth
http://manthanaward.org/e-inclusion-accessibilty-winner-2014/
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
https://github.com/tesseract-ocr/docs/blob/master/das_tutorial2016/7Building%20a%20Multi-Lingual%20OCR%20Engine.pdf
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/alto/
https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc
https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc
https://unicode.org/charts/PDF/U0C80.pdf

1:24 H. R. Shiva Kumar and A. G. Ramakrishnan

B. Vijay Kumar and A.G. Ramakrishnan. 2002. Machine recognition of printed Kannada text. In Fifth
IAPR International Workshop on Document Analysis Systems (DAS-2002), Vol. 5. Springer Verlag,
Berlin, 37 – 48.

B. Vijay Kumar and A.G. Ramakrishnan. 2004. Radial basis function and subspace approach for printed
Kannada text recognition. In International Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
Vol. 5. IEEE, 321 – 324.

Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction problem. Journal of the
ACM (JACM) 21, 1 (1974), 168–173.

Nick White. 2014. uzn format. (Aug 2014). Retrieved August 21, 2014 from https://github.com/
OpenGreekAndLatin/greek-dev/wiki/uzn-format

Wikipedia. 2018a. Konkani language. (Oct 2018). Retrieved October 3, 2018 from https://en.wikipedia.
org/wiki/Konkani_language

Wikipedia. 2018b. Tulu language. (Oct 2018). Retrieved October 3, 2018 from https://en.wikipedia.org/
wiki/Tulu_language

Received December 2018

ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 1, No. 1, Article 1.
Publication date: February 2020.

https://github.com/OpenGreekAndLatin/greek-dev/wiki/uzn-format
https://github.com/OpenGreekAndLatin/greek-dev/wiki/uzn-format
https://en.wikipedia.org/wiki/Konkani_language
https://en.wikipedia.org/wiki/Konkani_language
https://en.wikipedia.org/wiki/Tulu_language
https://en.wikipedia.org/wiki/Tulu_language

	Abstract
	1 Introduction
	1.1 Literature Survey
	1.2 Contributions of this Paper

	2 Kannada Recognition Units
	2.1 Kannada Aksharas
	2.2 Ottus and OCR Challenges Posed by Them
	2.3 Recognition Units for a Realistic Kannada OCR

	3 The Design of Lipi Gnani
	3.1 Text Block Selection, Skew Correction and Binarization
	3.2 Line, Word and Character Segmentation and Italic Correction
	3.3 Handling of Ottus and Special Symbols
	3.4 Feature Extraction and Classification
	3.5 Viterbi Algorithm for Word Formation
	3.6 Kannada Unicode Generation Module
	3.7 Handling of Merges and Splits

	4 Performance Evaluation - Open Datasets and Metrics
	4.1 Benchmark Dataset of Kannada Printed Pages
	4.2 Multilingual Datasets Printed in Kannada Script
	4.3 Computation of Recognition Accuracy

	5 Results and Discussion
	5.1 Tesseract Version Compared
	5.2 Results on Kannada Benchmarking Dataset
	5.3 Results on Konkani, Tulu, and Sanskrit Benchmarking Datasets

	6 Conclusion
	7 Acknowledgments
	References

