July 17, 2018

To Whom It May Concern

Limited Tender for a PECVD System

This is an RFQ (Request for Quote) for procurement of a PECVD system as part of a limited tender for the Centre for Nano Science and Engineering (CeNSE) at IISc, Bangalore.

CeNSE is a multidisciplinary research department at IISc that houses a 14,000 sq. ft. cleanroom and characterization facility used by 50 faculty members from various disciplines at IISc. CeNSE also runs a program called Indian Nanoelectronics Users Program (INUP) which has allowed 4200 participants from more than 700 universities and institutes all over India to use the facilities at CeNSE. Consequently, any tool in CeNSE receives significant exposure to scientific community at IISc and beyond. The vendors are requested to factor in the value of this exposure in to their quotes. Details of existing facilities and INUP program can be gleaned from:

http://nnfc.cense.iisc.ac.in/
http://www.mncf.cense.iisc.ac.in/
https://www.inup.cense.iisc.ac.in/

Also, CeNSE hosts equipment on behalf of vendors, as a national standard or ‘model’ system. If the vendor is interested, CeNSE can consider working out a similar arrangement for the PECVD system.

Procedure

1. Vendors will be required to submit a technical proposal and a commercial proposal in two separate sealed envelopes. Only vendors who meet the technical requirement will be considered for the commercial negotiation. The bundle envelop should have “Quotation for PECVD system” as title for identification.

2. **The deadline for submission of proposals is extended till 24th of July 2018, 5:30 pm Indian Standard Time.** Proposals should arrive at the Main office, GF-15, Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India, by the above deadline.

3. The decision of purchase committee will be final.

4. The technical proposal should contain a compliance table with 5 columns. The first column must list the technical requirements, in the order that they are given in the technical configuration below. The second column should describe your compliance in a “Yes” or “No” response. If “No” the third column should provide
the extent of the deviation (please provide quantitative responses). The fourth column should state the reasons for the deviation, if any. The fourth column can be used to compare your tool with that of your competitors or provide details as requested in the technical requirements table below.

5. Any additional capabilities or technical details, that you would like to bring to the attention of the purchase committee, can be listed at the end of the technical table.

6. Vendors are encouraged to highlight the advantages of their tools over comparable tools from the competitors.

7. If multiple systems can fulfill the requirements, vendors can submit multiple bids.

8. In the commercial bid, please provide itemized cost of the system and required accessories, such as software, power supply, etc.

9. As an option, please provide itemized cost for any suggested accessories/add-ons that may enhance the usability, capability, accuracy or reliability of the tool. Vendors are encouraged to quote for as many add-ons as their tool portfolio permits.

10. The quotes should be CIF Bangalore, India. So please include cost of shipping.

11. Please indicate the warranty provided with the tool. Warrant of 3 years of more is preferred.

12. Provide itemized cost for required spares for 2 years of operation. For sake of this calculation, the vendor may assume active tool usage of 20 hours/week. This number will be used to estimate the life cycle cost of the tool.

13. Clarify if periodic (preventive) maintenance be done by a trained on-site engineer or requires a specialist from the OEM.

14. If maintenance requires OEM, as an additional option, provide cost of an annual maintenance contract (AMC) for 3 years, post warranty. The AMC must cover 1 scheduled and 1 emergency visit per year. It must also indicate who will service the AMC, an Indian agent or the OEM. The AMC cost must also include an itemized list of spares that are essential for the scheduled visits.

15. The RFQ must include references of 3 previous installations, preferable in India. Please provide the names and contact addresses of the referees, so that the committee can contact them independently.

16. Any questions can be directed to Dr. Savitha P, GF-20, Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India. (savithap@iisc.ac.in)
<table>
<thead>
<tr>
<th>Technical Requirements</th>
</tr>
</thead>
</table>
| 1. **Primary application** | • For deposition of:
SiO₂, SiN, SiON with ability to tune RI, stress of the films
• Trench filling of 100nm wide trenches with aspect ratio’s upto 1:4
• Must conform to some SEMI standard for equipment manufacturing, e.g. SEMI-S1-1015, SEMI S2-1016B, SEMI S28-1011 etc. |
| 2. **Secondary application** | • Deposit a-Si |
| 3. **Chamber type** | • PECVD/ICP CVD |
| 4. **Process capability** | • Depositing SiO₂, SiN and SiON with thickness non-uniformity of <3% across the wafer and also wafer to wafer
• Trench filling of 100nm wide trenches with SiO₂
• RI and Stress tenability
• Please specify the highest aspect ratio trench filling that can be achieved
• Provide detailed technical literature for the system use, such as your prior experience and technical data on etch processes and tool **capabilities** |
| 5. **Process recipes** | • At the time of installation, all standard process recipes should be provided, detailed process recipe for trench filling to be provided |
| 6. **Substrate details** | • Processing of upto 6 inch wafers
• However, we need suitable substrate adapters to process 4 inch, 3 inch, 2 inch and cut pieces of substrates measuring more than 2cmx2cm
• Should be able to handle substrates other than Si, like Alumina, SiC, GaAs |
| 7. **Tool requirements** | • Load lock chamber: software controlled load and unload options
• Wider matching network
• The roughing vacuum pump for main chamber and load lock chamber should be dry pumps (preferably Edwards) with appropriate pumping capacity. Turbomolecular pump |
with appropriate capacity for ensuring the required process vacuum.
 • He backside cooling, if needed

8. Electrode temperature
 • \(\leq 380^\circ \text{C} \)

9. Power level
 • Typical RF Power range 100W - 600W, with automatic power matching unit and with an option to bias the substrate (typical range of 100W - 600W)

10. Chuck configuration
 • Electrostatic chuck with the provision to handle 6 inch wafers
 • Give options for the use of 4 inch wafer as well
 • Options to be given for manual chuck as well, with the pros and cons of using the same.

11. End point detection
 • Give all the options available, itemize cost

12. Process gases lines required
 1. O2
 2. Ar
 3. N2
 4. SiH4
 5. NH3
 6. Empty line

13. Gas Manifold
 Gas manifold should have 6 lines.
 • MFCs need to be installed only for the lines and gases specified. All the lines should have swagelok VCR fittings and welding if any should be orbital welding. The lines should be SS316L electro-polished suitable for corrosive and non corrosive gases used for the specific process. MFCs should be MKS make.

14. Footprint & weight
 • The system should compatible with better than class 1000 cleanroom environment. Please specify the total foot print in cm x cm, and weight.

15. Process software
 • Front panel displaying equipment and process status along with appropriate software to be supplied.
 • The software must allow varying levels of instrument access. A simplified basic access for a user to a full access to an engineer.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Periodic Maintenance</td>
</tr>
</tbody>
</table>
| | • The system should require minimal maintenance.
| | • Mention the recommended preventive maintenance schedule for the system. Any accessories needed for periodic preventive maintenance for 3 years e.g. O-rings, should be mentioned in separately the itemized quote.
| | • Can the preventive maintenance be done by a trained on-site engineer or requires a specialist from the OEM? If the latter, please provide cost of a 3 year AMC with required kit/consumables.
| | • The system should be supported by a trained local representative and should have a 48 hour window of response |
| 17 | **Installation and Training** |
| | • Installation and training at customer site, by the experts from principals should be part of the package.
| | • During the installation all the specifications of the processes should be verified for acceptance by the customer.
| | • If periodic maintenance can be done by the on-site engineer, please include the cost of training the engineer. |
| 18 | **Power & utilities** |
| | • The instrument should work with Indian standards
| | • Mention the power requirement.
| | • Mention any utility requirement (water, air, exhaust, etc.) |
| 19 | **Gas abetment system** |
| | • Specify the scrubbing system needed for treating exhaust gases from the process |
| 20 | **Safety** |
| | • Mention any special safety requirement of the tool |
- The tool must come with a complement of interlocks to prevent common user errors.
- Sensors should be provided to detect ppb levels of gas leaks and utility failures including scrubber failure.
- Any malfunction should have an audible alarm system.
- Flashing lights during emergencies should also be an option.

21. Recommendation
- The system must submit references from at least 3 previous installations.
- The names and contact addresses of the referees must be submitted with the proposal, so the purchase committee can contact them independently.

22. Pre-purchase testing
- To ensure the equipment conforms for specifications, the committee requires the vendor to perform some standard tests before the purchase process is complete. The validity of the tender will hinge on the successful and accurate measurement of these test samples.
- The vendor must conclude the testing and submit the data within 1 week of receipt of samples.

23. Acceptance tests
- Blanket deposition of SiO2, SiN and SiON samples. Please submit samples for the highest and lowest RI, stress levels and BHF etch rates possible with the tool.
- Trench filling with SiO2 for trenches with 1:4 aspect ratios.

Thanking you,

Shankar Kumar Selvaraja
Assistant Professor
Room No. TF-04, Center for Nano Science and Engineering (CeNSE),
Indian Institute of Science, Bangalore-560012
Phone (direct): +91 (0)80 2293 3342
Phone (thr. ext): +91 (0)80 2293 3181 (Ext. 404)
Fax: +91-80-2360 4656
Email: shankarks@iisc.ac.in