

ST 201 Jan 3:0

Thermochemical and biological energy recovery from biomass

Instructor

S Dasappa and HN Chanakya Email: dasappa@iisc.ac.in and chankya@iisc.ac.in

Teaching Assistant

Email:

Department: Centre for Sustainable Technologies

Course Time: Mon, Wed and Friday
Lecture venue: CST
Detailed Course Page:

Announcements

Brief description of the course

This course is focused to provide an insight into the biomass conversion processes for energy and by-products.

On specific request the final year UG environmental students are also allowed to credit.

The students are exposed to the physical and chemical properties of biomass and their influence on the conversion technology.

The thermo-chemical section section provides an opportunity for the student to address the interaction between the reactants to yield various products. Aspects related equivalence ratio, adiabatic flame temperature, stoichiometry, pyrolysis, etc which are components of sub process are dealt in detail.

The biological conversion address the specific needs of the bio-chemical requirement and its dependence on the fuel composition. Hydrolysis a major sub-process addressing the soluble and insoluble components and their initiation of reactions is addressed.

Prerequisites

None

Syllabus

Biomass and its properties relevant for conversion processes. Thermochemical energy conversion processes and devices – stoves, combustors and gasifiers for heat, power and co-generation applications. Biological conversion techniques, processes and reactors. Efficiency, emissions. performance of end use devices and resource recovery options.

Course outcomes

This course in particular exposes the students towards addressing the energy conversion process for biomass for various outputs. The background acquired in this course will be a starting point for further research in the energy technologies or even bio-fuel programs.

Grading policy

Tests - 10

Assignments - 15 %

Midterm 25 %

Final exam - 50 %

Assignments

Resources

Borman, G.L. and Ragland, K.W., Combustion Engineering, McGraw-Hill International Editions, Mechanical engineering

series.

HS Mukunda, Understanding clean energy and fuels from biomass, Wiley India

Relevant papers from current literature.