

PH354 Jan. 3:0

Computational Physics

Instructor

Manish Jain Email: mjain@iisc.ac.in

Teaching Assistant

Email:

Department: Physics

Course Time:

Lecture venue:

Detailed Course Page:

Announcements

Brief description of the course

This course is a very hands-on course which has two main objectives:

- 1. Learning basic methods, tools, and techniques of computational physics.
- 2.Developing practical computational problem-solving skills.

The course will have a project as well as biweekly assignments.

Prerequisites

None (masters level physics)

Syllabus

1 Introduction to computational physics, computer architecture overview, tools

of computational physics (1.5 hours)

- 2 Machine representation, precision and errors (1.5 hours)
- 3 Tools of the trade (6 hours)

Quadratic equations; Power series; Delicate numerical expressions; Dangerous subtractions; Preserving small

numbers; Partial Fractions; Cubic equations; Sketching functions;

4 Roots of equations (6 hours)

Real roots of single variable function; iterative approach; qualitative behavior of the function; Closed domain methods (bracketing): Bisection; False position method; Open domain methods: Newton-Raphson, Secant method; Muller's method; Complications; Roots of polynomials; Roots of nonlinear equations;

5 Quadrature (6 hours)

Direct fit polynomials; Quadrature methods on equal subintervals; Newton-Cotes formula; Romberg Extrapolation; Gaussian quadrature; Adaptive step size; Special cases;

6 Random numbers and Monte-Carlo (6 hours)

Random number generators; Monte-Carlo integration; Non-uniform distribution; Random Walk; Metropolis algorithm;

7 Fourier methods (3 hours)

Fast Fourier transform; Convolution; Correlation; Power spectrum;

8 Ordinary differential equations (9 hours)

Initial value problems: First order Euler method; Second order single point methods; Runge-Kutta methods;

Multipoint methods; Boundary value problems: Shooting method; equilibrium boundary value method;

9 Numerical Linear algebra (9 hours)

Matrix Factorizations: QR Factorization; Gram-Schmidt Orthogonalization; Householder Triangularization;

LU and Cholesky factorization; Schur factorization; Direct elimination methods: Gauss elimination (pivoting,

scaling); Tri-diagonal systems; Iterative methods: Jacobi iteration; Conjugate Gradients; Eigenvalue problems:

Rayleigh Quotient; Arnoldi and Lanczos methods;

Course outcomes

Learn basic programming and applying it to physics problems.

Grading policy

50% Project and 50% Assignments

Assignments

7/8 assignments (biweekly) and project. The project will be decided in consultation with the instructor (and research advisor)

Resources

Textbooks:

- 1. Mark Newman, Computational Physics, CreateSpace Independent Publishing Platform (2013).
- 2. Rubin H. Landau, Manuel J. Paez and Cristian Bordeianu, Computational Physics, 3rd Ed Problem Solving with Python, Wiley (2015).
- 3. A. Klein and A. Godunov, Introductory Computational Physics, Cambridge University Press (2006).
- 4. Forman Acton, Real computing made real: Preventing Errors in Scientific and Engineering Calculations, Dover Publications.
- 5. Lloyd N. Trefethen and David Bau, Numerical Linear Algebra, SIAM.