

E9-202 Aug 3:0

Advanced DSP: Non-linear Filters

Instructor

Prof.T.V. Sreenivas Email: tvsreenivas@gmail.com

Teaching Assistant

Email:

Department: ECE Course Time: T, Th, 2-3.30pm Lecture venue: ECE 1.07 Detailed Course Page:

Announcements

Brief description of the course

The course is meant for PG students of ECE. It introduces optimal estimation as filtering and optimality under non-Gaussian (Laplacian & Cauchy) noise as leading to median filter and myriad filters. A variety of median filters and myriad filter as an extension of linear filter are discussed. Stack filter as a generalization of median filter and its boolean logic implementation are shown. Also 2D and polynomial filters are introduced for their special properties.

Prerequisites

i) Digital Signal Processing

ii) Basic probability and statistics

Syllabus

i) Mean, Median, Mode filtering as optimal filters for Gaussian, Laplacian and Cauchy noise conditions

- ii) Generalization of Median Filter: recursive, rank-order, weighted, adaptive
- iii) Threshold decomposition, stack filters, Boolean logic realization
- iv) Mallows Theorem: linear to non-linear smoothers/filters

v) L-estimator, 2D L-ell filters; polynomial filters

Course outcomes

This course expands the horizon of signal processing and communication students to non-linear techniques

and their optimality, deviating from the predominantly Gaussian.linear analysis of signals and systems.

Non-filters are also power efficient and are based on sorting and boolean logic implementations.

Grading policy

20% project, 30% mid-term tests, 50% final exam

Assignments

Resources

i) GR Arce : Non-linear signal processing: A statistical approach, 2004ii) Astola and Kuosmanen : Fundamentals of non-linear digital filtering, 1997